SCREENING AND IDENTIFICATION OF THERMOPHILIC MICROORGANISMS THAT PRODUCE EXTRACELLULAR LIPASE FROM HULU LANGAT HOT SPRING

UMMUL HANAN BINTI MOHAMAD

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biomolecular Science in the Faculty of Applied Sciences Universiti Teknologi MARA

NOVEMBER 2009

ACKNOWLEDGEMENTS

Alhamdullillah and Syukur to Allah S.W.T for HIS Blessing and Kindness that allows me to successfully complete my final year project. Without HIS Mercy, it may be an impossible task to accomplish. I would like to express my appreciation to none other than my outstanding supervisor, Prof Madya Lee Hung Kiong, for the push to complete this project. My heartfelt thanks are especially dedicated to the Head of Biomolecular Science programme, Dr. Faiz Foong Abdullah for his continuous support, big help and useful advices. Next, I would like to convey my thanks to all the lecturers of Biomolecular and Microbiology Programme who gave me the head starts to begin this project. I would also like to lengthen my thanks to my beloved parents, Ummi and Addy, who always encourage me to do my best. Nevertheless, I really appreciate all the help and assistance from the laboratory personnel, Encik Johari, Cik Effah, Encik Rozali and Puan Suriati. Being in the lab is such a great experience. Last but not least, special thanks to my fellow class mates of Bachelor in Science (Hons.) Biomolecular Science, Part 5, 2009, who I went thick and thin with, up and down in our years together, the moments we had will be my sweetest memory to cherish.

Ummul Hanan

TABLE OF CONTENTS

		Page
ACK	iii	
TAB	iv	
LIST	vii	
LIST	viii	
LIST	ix	
ABS	х	
ABS	xi	
CHA	APTER 1 INTRODUCTION	
1.1	Background	. 1
1.2	Problem statements	5
1.3	Significance of study	6
1.4	Objectives of study	7
CHA	APTER 2 LITERATURE REVIEW	ئە

2.1	Therm	Thermophiles		
2.2	Lipase	۵.	8	
	$2.\bar{2}.1$	Classification		
	2.2.2	Advantages of thermostable lipase	9	
		2.2.2.1 Stable at high temperature	9	
		2.2.2.2 Resistant to organic solvents	10	
		2.2.2.3 Cofactor requirements	10	
		2.2.2.4 Easy termination of lipase-catalysed reaction	10	
2.3	Therm	ophiles producing thermostable lipase	11	
2.4	Bioche	emistry of lipase production by bacteria and fungi	12	
2.5	Screen	ing for lipase production	14	
2.6	Factor	s affecting lipase activity and production by thermophiles	16	
	2.6.1	Temperature	16	
	2.6.2	pH	18	
	2.6.3	Incubation period	19	
	2.6.4	Carbon source	20	
	2.6.5	Nitrogen source	21	
	2.6.6	Metal ions	32	
2.7	Indust	rial applications of lipase	24	
	2.7.1	Lipases in dairy industry	24	
	2.7.2	Lipases in detergent industry	24	
	2.7.3	Lipases in cosmetic and perfume industry	25	
	2.7.4	Lipases in leather industry	25	
	2.7.5	Lipases in waste management industry and paper	26	
		manufacture	,	

ABSTRACT

EXTRACELLULAR LIPASE FROM THERMOPHILIC MICROORGANISMS

Lipolytic thermophilic bacteria was successfully isolated from Hulu Langat hot spring water. Molecular biological technique based on 16SRNA analysis revealed that the isolated bacteria species was *Bacillus subtilis*. Selective isolation of bacteria from hotspring water is performed using Rhodamine-B Tween 80 agar in which lipase producer is identified based on presence of orange fluorescence halos around colonies when plate is irradiated with UV light. Further characterisation of isolated bacteria is performed based on the colony characteristics on media as well as Gram staining. *Bacillus subtilis* isolated from hotspring appeared as clear looking colony with reddish tint. It was irregular in shaped, flat, mucoid and big. It was also motile and catalase positive. Under Gram staining, it was arranged in chains and was big long rods. The isolated lipase producer grew best at $55^{\circ}C$ at alkaline pH of 8.1.

CHAPTER 1

INTRODUCTION

1.1 Background

Hot springs are natural phenomenon that occurs when water seeps into the earth and is heated by magma. The increase of pressure causes water to emerge from the earth as heated pool. As the water flows, minerals are infused into water (Martinko & Madigan, 2006). Due to this, hot springs are believed to possess therapeutic values that may have positive effects on human health disorders especially involving nervous system, digestive system, blood circulation and organs function. Many hot springs have extremely high temperature, sometimes reaching boiling temperature. However, Malaysian hot springs are mostly in the range of 40 to 65° C.

In addition to temperature differences, hot springs differ in their chemical or mineral composition, pH values and level of nutrients. In Malaysia, most hot springs are alkaline in pH. Thus, most thermophiles from these hot springs are alkalinophiles. Thermophiles are microorganisms which grow well at 45 to 80^oC (Martinko & Madigan, 2006).

1