MICROWAVE NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS LOW FREQUENCY RANGE (50 - 2000 MHz)

Thesis presented in partial fulfilment for the award of the Advanced Diploma in Electrical Engineering of INSTITUT TEKNOLOGI MARA

RAFIDAH BT ABDUL MALIK Department of Electrical Engineering INSTITUT TEKNOLOGI MARA 40450 Shah Alam, Malaysia DECEMBER 1995

Abstract

A study has been made on microwave nondestructive testing (NDT) that was used to test nonconducting and semiconductors materials especially composite materials. These materials such as plastics, wood and rubber were measured by MODEL 6409 RF NETWORK ANALYZER that operates in the low frequency range of 10 - 2000 MHz. Coaxial slotted line has been used as sample holder or transmission line. Transmission and reflection test methods have been used to measure the sample characteristics. The purpose of this work is to find the transmission loss, return loss and power absorption coefficient (PAC).

ACKNOWLEDGMENT

In the name of Allah s.w.t, the Most Gracious, Ever Merciful, who has given me the strength and ability to complete this project and report.

I would like to express my deepest gratitude to my project advisor Dr. Deepak Kumar Ghodgaonkar for his guidence, ideas and valuable advice which made possible this final year project.

My sincere appreciation to Mr. Shukor bin Abdul Jalil (Technician of CNC laboratory, CADEM), Mr. Ahmad Azelan bin Mat Isa (Course Tutor of Diploma in Mechanical) and School of Applied Science for their kindness and help in preparation of the samples.

My special thanks are to all the Advanced Diploma lecturers and staff who have sporting spirit and taught me to this level.

Finally, thanks to this green campus for teaching me the meaning of life.

CONTENTS

Page No.

	Abstract				
	Acknowledgment				
	Contents				
1.	CHAPTER 1- Introduction				
2.	CHAPTER 2 - Project Background				
	2.1	General			
	2.2	Conventional Measurement Techniques			
	2.3	Microwave Frequency	6		
	2.5	Microwave Testing	7		
3.	CHAPTER 3 - Theory				
	3.1 Basic Concepts				
		3.1.1 Microwaves			
		3.1.2 Nondestructive Testing (NDT)	9		
		3.1.3 Dielectric Materials	10		

		3.1.4	Material Properties and Constitutive Relations	11		
			3.1.4.1 Conductivity			
			3.1.4.2 Complex Permittivity	12		
			3.1.4.3 Complex Permeability	14		
	3.2	Micro	wave Techniques	15		
		3.2.1	Microwave NDT of Composite	16		
	3.3	Microwave Material Analysis				
		3.3.1	Characterization of Microwave Materials	17		
		3.3.2	Advantages of Microwave Testing Methods	18		
	3.4	Composite Materials				
		3.4.1	Types of Composite	20		
			3.4.1.1 Particulate-reinforced	21		
			3.4.1.2 Fiber-reinforced			
			3.4.1.3 Laminates Composite	22		
		3.4.2	Advantages of Composite			
4.	CHAP	TER 4	- Formulation of The Project	24		
	4.1	Power	Absorption Coefficient (PAC)			
		4.1.1	Formula to find the PAC by theory			
		4.1.2	Formula to find the PAC by experimental work	26		
5.	CHAF	TER 5	- Methodology of Implementation	27		
	5.1	Equip	ment			
	5.2	Sampl	es	28		