FREE-SPACE MEASUREMENT OF COMPLEX PERMITTIVITY AND COMPLEX PERMEABILITY OF POLAR AND NON-POLAR RUBBER COMPOSITES AT MICROWAVE FREQUENCY

MOHD FIZA BIN ABDUL MAJID Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and the most Merciful. It is with the deepest sense of gratitude to Allah who has given the strength and the ability to me to complete this project and the thesis as it is today.

I would like to express my sincere gratitude and appreciation to my supervisor, Associate Professor Dr. Deepak Kumar Ghodgaonkar for providing the support, concern and invaluable guidance towards the success of this project. All the regular discussion that we had through the period of study has contributed to the success of this project.

I would also like to wish acknowledge to all the Research Assistance for their time and effort in giving me guidance on how to use the equipment in the Microwave Laboratory (Microwave Technology Center).

I must also acknowledge to all the staff of Electrical Engineering Department. Lastly my deepest thanks to my family and to all my friends especially Suhaimi, Afzanizam, Nasrim and Hasbullah for their inspiration and invaluable support, along the duration of my studies and until this thesis is successfully completed.

Thank you.

ABSTRACT

This project involves a free-space measurement system operating in the 7.5-12.5 GHz frequency range to measure the reflection and transmission coefficients, S₁₁ and S₂₁, of planar samples. It involves measurements of the dielectric constant, loss factor and loss tangent of the rubber composites. The complex electric permittivity and the magnetic permeability are calculated from the measured values of S_{11} and S_{21} using FORTRAN 77 and Borlan C++ computer programs. The measurement system consists of transmit and receive horn lens antennas, a network analyzer, mode transitions and a computer. Diffraction effects at the edges of the samples are minimized by using spotfocusing lens antennas. Errors due to multiple reflections between antennas via the surface of the samples are corrected by using a free-space LRL (line, reflect, line) calibration technique. Because of the samples used in this measurement is thin and flexible, it had to be sandwiched between two half-wavelength (at midband) quartz plates, to eliminates the effects of sagging. Results are reported in the operating frequency as stated above for the material used which is Teflon. To eliminate the effect of Teflon, Borlan C++ computer program is used.

TABLE OF CONTENTS

CHAPTER

1	INTRODUCTION			
	1.1 Introduct	tion	1	
	1.2 Scope of	Work	2	
	1.2.1 S	tudy of Measurement Equipment, Dielectric	2	
	a	nd Magnetic Properties		
	1.2.2 C	Choose Type of Measurement Technique	2	
	1.2.3 C	Calibration Using Chosen Measurement	3	
	Т	`echnique		
	1.2.4 A	Analysis of Result	3	
2	INTRODUC	CTION TO MICROWAVES		
	2.1 Introduct	tion	4	
	2.2 Advanta	ges of Microwaves	6	
	2.3 Applicat	ions of Microwaves	7	
3	RUBBER C	OMPOSITES		
	3.1 Natural I	Rubber	10	
	3.2 Styrene-	Butadiene Rubber	13	
	3.3 Polybuta	diene Rubber	14	
	3.4 Acryloni	trile Rubber	16	
4	CARBON B	LACK		
	4.1 Structure		18	
	4.2 Basic Fa	ctors Influencing Elastomer Reinforcement	19	
	4.3 Typical I	Filler Characteristics	20	
	4.4 Filler Ch	aracteristics and Vulnizate Properties	21	
		*		

FREE-SPACE	MICROWAVE	MEASUREMENT
SYSTEM		

5.1 A Free-Space Technique	23
5.2 Free-Space Microwave Measurement System	
5.3 Vector Network Analyzer (V	VNA) 25
5.3.1 VNA Measurement	26
5.4 Measurement of Reflection	Coefficient 27
5.4.1 Error of Measuring U	Jsing Free-Space 27
5.5 Spot-Focusing Horn Lens A	ntenna 28

6 THEORY

5

6.1	Transmission-Reflection Method		30
6.2	2 Introduction of Scattering Parameters		
6.3	.3 Complex Permittivity		
	6.3.1	Real Dielectric Constant	37
	6.3.2	Loss Factor	38
	6.3.3	Loss Tangent	38

7 EXPERIMENTAL WORK

7.1	The Flowchart of the Experimental Work	40
7.2	Measurement Setup	41
7.3	Experimental Method	42
7.4	Quartz Plate-Sample-Quartz Plate Method	43

8 **RESULT AND DISCUSSION**

8.1	List of Samples And Thickness		46
8.2	2 Calibration Results		46
8.3	3 Experimental Results		46
	8.3.1	S ₁₁ Without Effect of Teflon	48
	8.3.2	S ₂₁ Without Effect of Teflon	48
	8.3.3	Complex Permittivity	49

vi