BUTTERWORTH LOW-PASS FILTER DESIGN

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons.) Electrical

ISMAHALILI BIN ISHAK

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

40450 SHAH ALAM SELANGOR

MAY 2009

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most beneficial and the most merciful. I would like to express my deepest gratitude and appreciation to my supervisor and co-supervisor, Pn. Kamariah Ismail and Pn. Suhana Sulaiman for their guidance, advices, supervision, and encouragement to me in finish this project. I also would like to say thanks to my lecturers and technician, Prof. Dr. Zaiki Awang, Pn. Ruby and En.Hisyam for helping and providing the substrate and SMA connector for this project.

Finally I would love to say thanks to my family and all my friends for giving me encouragement to complete this project.

ABSTRACT

This work highlighted on the development carried out on miniaturized radio frequency (RF) low-pass filter. The design, simulation and fabrication of Butterworth low-pass filter (BPLF) was accomplished using Rogers Duroid substrate for low-k substrate. Design, simulation and analysis of Butterworth low-pass filter using high-k substrate was also carried out. It was observed that, the use of high-k resulted in miniaturization of Butterworth low-pass filter.

TABLES OF CONTENTS

CHAPTER	{ 1	1			
1.1	INTRODUCTION AND OBJECTIVE OF THE PROJECT	1			
1.2	MICROWAVE	2			
1.3	MICROWAVE MONOLITHIC CIRCUIT (MMIC)	3			
1.4	MICROSTRIP CIRCUIT	4			
1.5	SUMMARY OF THE THESIS	4			
CHAPTER 2					
2.1	THEORY OF MICROWAVE FILTERS	5			
2.1.	1 Ideal Microwave filters	5			
2.1.	2 Microwave Filter Design	6			
2.2	Low-pass filter	7			
2.3	Butterworth (maximally flat) low-pass filter	8			
2.4	Butterworth Low-Pass Filter Design	9			
2.5	Transformation from lumped elements to distributed elements	11			
CHAPTER	3				
3.1	Design and Simulation Procedure	12			
3.2	Genesys	13			
3.2.	1 Design low-pass filter without 50Ω feeder line	13			
3.2.	2 Design low-pass filter with 50Ω feeder line	16			
3.2.	3 Implementation Butterworth Low-pass Filter on High-k Substrate	17			
3.3	CST Microwave Studio	19			
3.3.	1 Design low-pass filter without 50Ω feeder line (low-k substrate)	19			
3.3.	2 Design low-pass filter with 50Ω feeder line	22			
3.3.	3 Implementation Butterworth low-pass filter on high-k substrate using CST	Г ЭЭ			
simi		23			
3.4	Simulation process using CST Microwave Studio	24			
CHAPTER 4					
4.1	raprication and measurement	25			
4.1.	L Etching process	25			
		Page 1			

4.1.2	2 Grounding process	25	
4.1.3	3 Soldering Process	26	
4.1.4	4 Measurement	28	
4.1.	5 Cleaning process	28	
4.1.	6 Calibration process	29	
4.2	Measurement process	32	
CHAPTER			33
5.1	Result and Discussion	33	
5.1.:	1 Design low-pass filter without 50Ω feeder line	33	
5.1.2	2 Design low-pass filter with 50Ω feeder line	36	
5.1.	3 Low-pass filter on high-k substrate	40	
CHAPTER	8 6		42
6.1	Conclusion	42	
6.2	Future Development	42	
REFEREN	ICE		43
APPEND	×		45