3rd ORDER MICROSTRIP SYMMETRICAL DBR FILTER AT 5GHz

HASIF BIN MOHAMAD

A dissertation submitted in partial fulfilment

of the requirements for the award

of the degree Engineering

(Electrical – Electronics & Telecommunications)

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITY TEKNOLOGI MARA

APRIL 2010

ACKNOWLEDGEMENTS

My first thanks is for my supervisor, Dr. Mohd Khairul bin Mohd Salleh, whose constant support, patience and unbounded of his invaluable help. His devotion to the needs of students and the encouragements has working with him a true delight. Thanks for helping me to kick start and finish this valuable research.

I would also like to thank all the staff members and my co-students who were always there at the need of the hour and provided with all the help and facilities, which I required for the completion of my project and thesis.

My greatest thanks are to all who wished me success especially my parents. Above all render my gratitude to the Almighty who bestowed self-confidence, ability and strength in me to complete this work for not letting me down at the time of crisis and showing me the silver lining in the dark clouds.

ABSTRACT

This research reports on the design of 3^{rd} order microstrip symmetrical dualbehaviour resonators (DBRs) filter. The filter is centered at 5GHz. The DBR filter is designed on FR4 substrate (dielectric thickness h=1.6mm, relative permittivity $\varepsilon_r =$ 5.4). Throughout the paper, simulations are proposed to illustrate the possibilities offered by the idea. Experimental results in microstrip technology are also presented in order to validate the idea. Lastly, benefit and drawbacks of the design are discussed.

TABLE OF CONTENTS

DECL	ARA	TION	iii
ACKN	[OW]	LEDGEMENTS	iv
ABSTI	RAC	Т	v
TABL	E OF	CONTENTS	vi
TABL	E OF	FIGURES	viii
LIST C	OF TA	ABLES	ix
СНАР	TER	8.1	1
INTRO	ODU	CTION	1
1.1	BA	ACKGROUND	1
1.2	OF	BJECTIVES	2
1.3	PR	OBLEM STATEMENT	2
1.4	SC	COPE OF WORK	2
1.5	PR	OJECT ORGANIZATION	3
СНАР	TER		4
LITE	RAT	URE REVIEW	4
2.1	M	ICROWAVE FILTER	4
2.2	FR	REQUENCY RESPONSE	6
2.3	IM	IPORTANT PROPERTIES OF FILTERS	8
2.4	CI	LASSIFICATION OF FILTER	11
2.	4.1	Digital Filters and Analog Filter	12
2.	4.2	Continuous Time and Switched Capacitor Filters	12
2.	4.3	Lowpass, Highpass, Bandpass, Allpass, Bandstop Filters	14
2.	4.4	Butterworth and Chebyshev Filters	16
2.5	V	ARIOUS TOPOLOGY OF MICROWAVE FILTER	19
2.	5.1	Stub Filter	19
2.	5.2	Coupled Line Filter	21
2.	5.3	Ring Filter Resonator	22
2.	5.4	DBR Filter	23

СНАР	TER 3	25
METH	IODOLOGY	25
3.1	INTRODUCTION	25
3.2	DESIGN FLOWCHART	26
3.3	THE THEORY AND SYNTHESIS	27
3.4	DESIGN (ideal case)	31
3.5	DESIGN (microstrip)	
СНАР	TER 4	36
RESU	LTS AND DISCUSSIONS	36
4.1	MEASUREMENT PROCESS	
4.2	DUAL-BEHAVIOUR RESONATORS ON THE FR4	37
4.	2.1 BENEFITS AND DRAWBACKS OF THE STRUCTURE	43
CONC	CLUSION	44
REFE	RENCES	45
APPE	NDIX-A	46
PROJE	ECT PROPOSAL	46
APPE	NDIX-B	52
TECH	NICAL PAPER	52