PARALLEL COUPLED BANDPASS FILTER

FOR WIMAX APPLICATIONS

ABDULLAH TOHIR BIN ABDUL AZIZ

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITY TEKNOLOGI MARA

MALAYSIA

ACKNOWLEDGEMENT

Praise to Allah Almighty with His blessing I am able to complete this project.

Firstly, I would like to thank Madam Kamariah Ismail as my supervisor for her guidance, assistant, advice, support and encouragement that helping me to complete this project.

My gratitude also goes to my parents and my other family for their encouragement, supports and prayers. Without them I would not have the courage to face problems during completing this project.

Finally, appreciation to all my friends for their suggestion, support and ideas that they giving me. Also thank to the individual who has involve directly or indirectly during the time of completing my Final Year Project.

Thanks you.

ABSTRACT

The work concentrates on the design of a parallel coupled bandpass filter (PCBPF) for WiMAX application. The design is a third order filter developed at the centre frequency of 5.77 GHz. The bandwidth of the filter is 9%. The filter is implemented by using epoxy laminate with relative permittivity, ε_r =3.0 with substrate thickness of 0.75mm. Simulations are proposed throughout the work to illustrate the various possibilities offered by the concept by using the Agilent Genesys 2009 software. Experimental results in microstrip technology are also presented in order to validate the idea.

TABLE OF CONTENTS

TITLE

PAGE

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATION	viii

INTRO	DUCTION1
1.1	INTRODUCTION1
1.2	BACKGROUND OF THE PROJECT1
1.3	OBJECTIVE
1.4	SCOPE OF WORK
1.5	ORGANIZATION OF PROJECT4
LITERA	TURE REVIEW
2.1	INTRODUCTION
2.2	MICROSTRIP FILTER THEORY
2.3	ALTERNATIVE TO MICROSTRIP
2.3	1 COPLANAR WAVEGUIDE (CPW)9
2.4	FILTER THEORY10
2.4	1 FREQUENCY SELECTION11
2.4	2 FILTER RESPONSE
2.4	3 IMPORTANT PROPERTIES OF FILTERS14
2.4	4 IMPORTANT PARAMETERS OF FILTER17
2.5	PARALLEL COUPLED LINE BAND-PASS FILTER

2.6	CAD (Computer Aided Design)21
METHO	DDOLOGY
3.1	INTRODUCTION
3.2	PROCEDURES
3.3	DESIGNING LUMPED ELEMENTS
3.3	.1 DESIGN PROCEDURE
3.4	DESIGNING DISTRIBUTED ELEMENTS
3.5	TUNING
3.6	FABRICATION
3.6	.1 SOLDERING PROCESS
3.7	MEASUREMENT PROCESS
3.7	.1 CALIBRATION PROCESS
3.7	.2 DEVICE UNDER TEST (DUT)41
RESUL	TS AND DISCUSSION42
4.1	INTRODUCTION
4.2	MEASUREMENT RESULTS
CONCI	USION AND RECOMMENDATION45
REFER	ENCES47
APPEN	DIX