A STUDY OF MULTILAYER SPIRAL INDUCTOR USING METAMATERIAL SUBSTRATE FOR 5.8GHZ WIMAX APPLICATION

SITI AMINAH BINTI KADRI

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most beneficial and the most merciful, it is with deepest serve gratitude of the Al-Mighty that gives strength and ability to complete this project.

I would like to take this opportunity to express my greatest thankful to my project supervisor, Pn. Zuhani binti Ismail Khan for her guidance, advices, supervision, encouragement and faith to me in accomplishing this project. I would also like to express my special thanks to En Asaari bin Sulaiman, Pn Hashimah Baba, En Huzaimy Jusoh and Hanisah Muhamed Nadzar for helping me in understand the concept of this project.

Finally, I would love to say thanks to my beloved family for their support and unending prayers and also to my friends for their understanding directly or indirectly in successful completion of my project.

ABSTRACT

New discovery material which contradicted in physic law known as metamaterial has been designed. It is the combination of the normal material (GaAs) with the unique structure. Computer Simulation Technology (CST) software has been used to design and simulate three-dimensinal structure. The results was then exported to Microsoft excel and Matlab to extract the dielectric value. Negative permittivity of material with split ring structure embedded in it has been used as a substrate for an inductor design. In a typical amplifier MMIC, up to 80% of chip area is occupied by inductors. Eagerness and inspired toward miniaturization, compact spiral inductors has been developed. These miniaturized inductors are constructed using a combination of three metal and three polyimide layers on a metamaterial substrate alternately. The area of multilayer inductor is almost four times smaller than planar design while maintaining same performance. The increasing number of layer, the performance of the inductor also improved. High performance of quality factor is the paramount desired with the consideration of losses.

TABLE OF CONTENTS

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	x
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	xiii

CHAPTER 1

INTRODUCTION OF RESEARCH	1
1.1 INTRODUCTION OF METAMATERIAL (MTML)	1
1.2 INTRODUCTION OF INDUCTOR	6
1.2.1 FUNDAMENTAL OF INDUCTOR	4
1.3 SPIRAL INDUCTOR MODELS	9
1.4 QUALITY FACTOR	9
1.5 HIGH FREQUENCY MATERIALS	10
1.5.1 GALLIUM ARSENIDE	11
1.5.2 POLYIMIDES	11
1.5.3 COPPER	11
1.6 PROBLEM STATEMENT	12
1.7 OBJECTIVE OF RESEARCH	13
1.8 SCOPE OF RESEARCH	13
1.9 METHODOLOGY	13

CHAPTER 2

2.1	METAMATERIAL	15
2.2	INDUCTOR	16

CHAPTER 3

META	MATERIAL DESIGN AND SIMULATION	19
3.3	INTRODUCTION	19
3.2	2 MTML DESIGN WITH CST	21
3.3	3 SIMULATION PROCESS	24
	3.3.1 TRANSIENT SOLVER PARAMETER	
3.4	CALCULATION IN MICROSOFT EXCEL AND MATLAB	29

CHAPTER 4

SPIRAL	INDUCTOR DESIGN AND SIMULATION	31
4.1	SPIRAL INDUCTOR DESIGN	31
4.2	MULTILAYER SPIRAL INDUCTOR WITH CST	31
4.3	SIMULATION PROCESS	35
	4.3.1 FREQUENCY DOMAIN SOLVER	40

CHAPTER 5

RES	SULT	S AND DISCUSSIONS	43
	5.1	INTRODUCTION	43
	5.2	MTML SUBSTRATE	43
	5.3	QUALITY FACTOR OF MULTILAYER SPIRAL INDUCTOR	45
	5.4	LOSS OF MATERIAL	49
	5.5	EFFECTIVE DIELECTRIC CONSTANT	50

CHAPTER 6

CONCLU	ISION AND FUTURE DEVELOPMENT	53
6.1	CONCLUSION	53
6.2	FUTURE DEVELOPMENT	54