ARCHIMEDEAN SINGLE-ARM SPIRAL ANTENNA FOR WI-FI APPLICATION

NURUL ASHKIN BTE MUHAMMAD

FAGULTY OF ELECTRICAL ENGINEERING UNIVERSITY TEKNOLOGI MARA MALAYSIA

ACKNOWLEDGEMENT

I would like to acknowledge the advice and guidance of Mrs. Kamariah Ismail, project supervisor. I also thank to lab staff, especially Miss Hanisah Nadzar and Mohd Khairil Adzhar for their guidance and suggestions, to all my friends for their advice and encouragement.

The major experiment materials for this work such as substrate and connector were provided by lab technicians, I appreciate their support.

I also would like to thank to my family members, especially my mother, aunty, cousins for supporting me to pursue this degree and finishing this work. Without their encouragement, I would not have finished this work.

ABSTRACT

This paper presents the design and analysis of Archimedean single-arm spiral antenna with five spiral turns. The antenna has been designed and fabricated with resonant frequency of 2.4 GHz for Wi-Fi application. The Archimedean single-arm spiral antenna was fabricated using FR-4 laminate with dielectric constant of 5.0 and substrate thickness of 1.6 mm respectively. The antenna was designed and simulated using computer simulation technology (CST) software and the characteristics were then measured using vector network analyzer ZVA 40 (VNA) and compared with the simulated results. The results show that the single-arm spiral antenna with five spiral turns performed very good in many ways.

TABLE OF CONTENTS

CHAPTER	TITLE			PAGE
	APP	i		
	DEC	ii		
	ACH	iii		
	ABS	iv v viii x		
	TAE			
	LIS			
	LIST			
	LIS	xi		
1 "	INT	1		
	1.1	INTR	1	
	1.2	WIRE	ELESS LOCAL AREA NETWORK (WLAN)	2
	1.3	OBJE	2	
	1.4	SCOP	2	
	1.5	OUTI	LINE OF THESIS	3
2	LIT	4		
	2.1	INTR	4	
	ANT			
	2.2	PARA	PARAMETERS OF ANTENNA	
		2.2.1	Radiation pattern	7
		2.2.2	Return loss	9
		2.2.3	Gain	10
		2.2.4	Half – Power Beamwidth	11
		2.2.5	Voltage Standing Wave Ratio (VSWR)	11

	2.2.6	Efficiency					
	2.2.7	Bandwidth	12				
	2.2.8	Radiation field	13				
		2.2.8.1 Radiation mechanism of microstrip	13				
	2.2.9	Input Impedance	15				
2.3	FEEDING METHODS						
	2.3.1	Microstrip line feed	16				
	2.3.2	Coaxial probe feed	17				
	2.3.3	Aperture coupled feed	18				
	2.3.4	Proximity coupled feed	19				
2.4	ARCH	IIMEDEAN SPIRAL ANTENNA	21				
2.5	POLARIZATION						
2.6	GEOM	GEOMETRICAL STRUCTURE OF SPIRAL					
ANT	TENNA						
2.7	MEAS	SUREMENT EQUIPMENTS	26				
	2.7.1	Vector Network Analyzer (VNA)	26				
	2.7.2	Antenna Training Measurement System	28				
ME	гнорс	DLOGY	29				
3.1	INTRO	ODUCTION	29				
3.2	DESIC	GN SPECIFICATION	29				
	3.2.1	Flowchart	30				
3.3	DESIC	JN PROCEDURE	32				
3.4	FABR	LICATED ANTENNA DESIGN	34				
RES	ULTS A	AND DISCUSSION	35				
4.1	INTRO	ODUCTION	35				
4.2	SIMU	LATION RESULTS OF SINGLE-ARM SPIRAL	35				
ANT	ENNA						

3

4