UNIVERSITI TEKNOLOGI MARA

MICROSTRIP ANTENNA FOR ADS-B SYSTEM

MOHD NAZIM MOHD ARSHAD

Dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science

Faculty of Electrical Engineering

July 2017

ABSTRACT

This thesis will discuss on designing and fabricating an Omnidirectional antenna

operating at Very High Frequency for Automated Dependant Surveillance

Broadcasting (ADS-B) System. The antenna will resonate at 1090 MHz and was

design with mixture of two methods, there are defected ground structure (dumbbell

shape at the ground) and fractal shape at the patch antenna.

The size of the proposed antenna after completed design phase by using CST-WMS

2015 is 71 mm x 65.52 mm and the resonance frequency of 1090 MHz. The size

reduction to 20% from the conventional approach due to the implementation of DGS

and Fractal Shape to conventional antenna. This antenna produced an

omnidirectional radiation pattern with 1.661 dB gain and 11.42% bandwidth base

on simulation result. Agreement between simulated and measured results is

provided a better achievement.

Keywords: Patch antenna, VHF (Very High Frequency), Omnidirectional, Defected

Ground Structure, Dumbbell shape, Koch Island.

iii

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to Allah S.W.T, my wife and children for the continuous support of my master study and research, for they patience, motivation and enthusiasm. I want to express my sincere gratitude and appreciation to my project supervisor Assoc. Prof. Ir. Dr. Ahmad Asari Sulaiman his guidance helped me in all the time of this project and writing of this thesis. I could not have imagined having a better supervisor and mentor for my Master study. I thank to lab Antenna Research Group (ARG) and the lab assistant in Univesiti Teknologi MARA Mr. Khalim and Mr. Hamizan with the continues support. Besides that, thanks to my officemate Miss. Siti Nurfarhanah Azizul Azlan, Mr. Kamil and Mr. Husnulbazli for their support to completed this thesis Last but not the least, I would like to thank my family: my mother Mrs. Salmah Yati and my wife Mrs. Kamaliana Mohd Nooh, for supporting me spiritually throughout my life.

Table of Contents

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	viii
LIST OF FIGURE	ix
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER 1	1
INTRODUCTION	1
1.1 Overview of the Project	1
1.2 Problem statement	2
1.3 Significance of research	3
1.4 Objectives	3
1.5 Thesis Structure and Background	4
1.6 Summary	4
CHAPTER 2	6
LITERATURE REVIEW	6
2.1 Literature Review	6
2.2 Microstrip Antenna	6
2.3 Overview of ADS-B System	8
2.4 Radiation Pattern	10
2.4 Directivity, Gain and Efficiency	14
2.5 Bandwidth	16
2.6 Research Questions	17

2.7 Summary	18
CHAPTER 3	19
METHODOLOGY	19
3.1 Methodology	19
3.2 Substrate	21
3.3 Conventional Microstrip Antenna	22
3.4 Feeding System	24
3.5 Dimensions of Reference Antenna	27
3.6 Defected Ground Structure (DGS)	29
3.7 Fractal Shape (Koch Island)	32
3.8 Fabricating Process	36
3.9 Simulation and Measurement Methodology	37
3.91 CST-WMS 2015	37
3.92 Measurement Methodology	39
3.10 Summary	40
CHAPTER 4	42
RESULTS AND DISCUSSIONS	42
4.1 Simulated results	42
4.2 Measured results	59
4.3 Radiation patterns	61
4.4 E-Field radiation patterns	63
4.5 Power Field radiation patterns	63
4.6 S11-Parameters Analysis	64
4.7 Discussion & Summary	67