UNIVERSITI TEKNOLOGI MARA

THE DEVELOPMENT OF SIMULATION MODEL AND LOCATION ACCURACY FOR OBSERVED TIME DIFFERENCE OF ARRIVAL IN WCDMA AND LTE SYSTEM

NORANIZAH BINTI SARBANI

Dissertation submitted in partial fulfillment of the requirements for degree of

Master of Science (Telecommunication and Information Engineering)

Faculty of Electrical Engineering

JULY 2013

ACKNOWLEDGEMENT

First and foremost, I offer my sincerest gratitude to the almighty Allah for all the opportunities given to me in pursuing and finally accomplished my study. I would also like to express my sincere appreciation to my supervisor, Dr. Norsuzila binti Ya'acob for all her patience, motivation, enthusiasm, and immense knowledge. My sincere thanks also go to Engr Sabariah Binti Bohanudin, my co-supervisor for her most valuable guidance.

Last but not least, my special thanks to my beloved husband, parents and children for their utmost support, understanding and courage for me to complete this research.

ABSTRACT

Obtaining and delivering user location in Long term Evolution (LTE) technology are various methods that help Communication Service Providers (CSPs) monetize and optimize their networks. It is very important in case of user makes an emergency call and service provider need to locate the geographical position of the user. In this paper, the goal with this work is to analyse the Location Determination Technique (LDT) based on Observed Time Difference of Arrival (OTDOA) in positioning technique in WCDMA and LTE system. This kind of positioning method were chosen as the user equipment (UEs) need to "hear" the signal from the nearest three base stations (Bs). Data from the driven test of Received Signal Code Power (RSCP) Node Bs will be used to simulate by using the OTDOA simulation model with fixed input parameters. Drive test has been made in urban areas in Kuala Lumpur and Shah Alam as the LTE system is in trial version in Malaysia when this paper is written. Then we proceed with analyse the data to gain the accuracy of the location by using OTDOA method. The accuracy will be evaluated by the standard of accepted location approximation error that has been state in WDCMA and LTE network in many studies. The analysis shows that the location errors in WCDMA and LTE system by using OTDOA method were least and have the most accuracy.

CONTENTS

				Pages	
ACF	KNOWL	EDGEM	ENT	iv	
ABSTRACT					
CONTENTS					
LIST OF FIGURES					
LIST OF TABLES					
LIST	Γ OF AE	BREVIA	TIONS	xi	
1.0	INTR	ODUCTI	ON	Ĭ	
1.0	Backg	round		1.	
1.1	Contr	bution of	study	1	
1.2	Proble	ems Staten	ment	2	
1.3	Objec	tives		3	
1.4	Scope	of study		3	
1.5	Organ	ization of	the Dissertation	4	
2.0	LITE	RATURE	E REVIEW	6	
2.0	Introd	uction		6	
2.1	Locat	7			
	2.1.1	2.1.1 Time-Base LDM			
		2.1.1.1	The U_TDOA method	8	
		2.1.1.2	The E-OTD and OTDOA methods	10	
		2.1.1.3	GPS-Based LDM	12	
	2.1.2	2.1.2 Power-Based LDM		14	
		2.1.2.1	RSL method	14	
		2.1.2.2	AOA	15	
	2.1.3	Other M	Methods "	17	
		2.1.3.1	The Cell-ID method	17	
		2.1.3.2	The TA method	18	
2.2	Comp	parison of LDM			
2.3	Barriers of LDM			20	
	2.3.1	Multipa	th Propagation and Non-LOS Conditions	20	

	2.3.2	Signal Bandwidth	21		
	2.3.3	Geometric Dilution of Precision	22		
	2.3.4	Hearability problem	22		
2.4	Related	l work on LDMs	22		
2.5	Localiz	24			
	2.5.1	OTDOA method	25		
3.0	METI	HODOLOGY	27		
3.0	Introd	27			
3.1	Mater	27			
3.2	Metho	28			
	3.2.1	Flow Chart	28		
	3.2.2	Determination of UE location	29		
	3,3	Summary	33		
4.0	RESU	JLT	34		
4.0	Introd	Introduction			
4.1	Drive	34			
4.2	Simul	36			
4.3	GMSK Performance against OQPSK performance				
5.0	CON	53			
5.0	Concl	Conclusions			
5.1	Recor	Recommendations			
REF	42				
APP	43				