THE EFFECT OF PATH LOSS COMPENSATION FACTOR TO SINR PERFORMANCE IN TWO-TIER LTE NETWORK

NUR HAZWANI BINTI ZAIDOON

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

MALAYSIA

ACKNOWLEDGEMENT

Alhamdulillah, all Praise to thank to Allah SWT the Almighty for giving me an opportunity to finish my thesis successfully. Special thanks to my supervisor, Dr Azita Laily Yusof for giving me a full support and patiently supervising my progress during this project. I also would like to thank my beloved friends for their support and friendship for the whole four years since I've been in UiTM. Last but not least, my sincere thanks to all my friends and relatives who have directly or indirectly helped us in all aspects regarding the thesis and project. Also, I am indebted to my institute, UiTM, to have provided the platform for gaining the precious knowledge and framing the paths of glory for my future. May Allah bless all of us.

ABSTRACT

In order to enhance indoor coverage, Long Term Evolution (LTE) has developed new technology called femtocells or called as Home Evolved Node B (HeNB). This low power device is a home base station that is installed by home or business user themselves. Also, this high-performance device operates in licensed spectrum and provide low cost coverage and capacity for small areas over public Internet backhaul. However, femtocell deployment in existing network caused interference between femtocells itself and interference to the existing macrocells. By having these types of interference, overall femtocell performance definitely will be affected. This paper will investigate the effect of path loss compensation factor, a in a mobile cellular system and proposed the best value of a. The values is then used in simulation to analyze UE's Signal to Interference and Noise Ratio (SINR) performance. The simulation is done using Matlab software and based on several interference scenarios that possibly occur in hierarchical mobile cellular network. Based on the simulation result obtained, higher value of a gives better SINR for UE.

CONTENTS

		PAGE
COVER TIT	LE	i
DECLARAT	ION	iv
ACKNOWL	EDGEMENT	vi
ABSTRACT		vii
CONTENTS		viii
LIST OF FI	GURES	xi
LIST OF TA	BLES	xiii
LIST OF AB	BREVIATION	xiv
CHAPTER 1	: INTRODUCTION	
1.0	Introduction	1
1.1	Problem Statement	3
1.2	Research Objectives and Scope of Project	4
1.3	Thesis Contribution	4
1.4	Thesis Outline	5
CHAPTER 2	2 : LITERATURE REVIEW	
2.0	Introduction	6
2.1	Long Term Evolution (LTE)	6
	2.1.1 LTE Architecture	8
	2.1.2 LTE Technologies	10
	2.1.3 LTE Frequency Spectrum	12
	2.1.4 OFDMA and SC-FDMA	14
	2.1.5 64-Quadrature Amplitude Modulation Technique (QAM)	15
	2.1.6 Multiple In Multiple Out (MIMO)	16

2.2 LTE Femtocell

	2.2.1 Uses of Femtocells in Different Environments	18
	2.2.1.1 Femtocells for Residential / SOHO Use	19
	2.2.1.2 Femtocells for Enterprise Use	19
	2.2.1.3 Femtocells for Outdoor Hostpots Use	20
	2.2.2 Femtocell Architecture and Standards	20
	2.2.2.1 Standardization	20
	2.2.2.2 Network Architecture	21
	2.2.3 Technical Deployment Considerations and Challenges	22
	2.2.3.1 Interference Management	22
	2.2.3.2 Allocating Spectrum	23
	2.2.3.3 Backhauling	23
2.3	Interference in Two-tier Network	24
2.4	Interference Management Technique	27
2.5	Power Control Technique	30
2.6	Path Loss Compensation Factor	32
2.7	Conclusion	33
CHAPTER 3	: METHODOLOGY	
3.0	Introduction	34
3.1	The Effect of Path Loss Compensation Factor on RSS	34
3.2	The Effect of Path Loss Compensation Factor on SINR	36
3.3	Simulation Scenarios	38
	3.3.1 Scenario 1	39
	3.3.2 Scenario 2	40
3.4	3GPP Path Loss Model	41

17