Zigbex Wireless Sensor Actuator Network (WSAN) Home Alarming System for Fire Detection

Thesis is presented in partial fulfillment for the award of the

Bachelor of Electrical Engineering (Hons)

UNIVERSITITEKNOLOGI MARA

MOHD RIZAL BIN ROSLAN
FACULTY OF ELECTRICAL ENGINEERING
UNIVERSITI TEKNOLOGI MARA (UiTM)
SHAH ALAM

Pv<^4j

^ • ^

NOV 2010

ı

ACKNOWLEDGEMENTS

All the praise and thanks is to Allah SWT for blessing me and giving me health and strength to complete this final year project. Alhamdulillah, my final year project is able to be completed within the time given and I have gain valuable experience and knowledge throughout completing this project.

Here, I would like to express my gratitude and appreciation to my project supervisor, Miss Wan Norsyafizan Binti W. Muhamad for her guidance and advices to me throughout the preparation and completion of this project.

I would like also thanks to the technical paper examiners on their comments and advices for my technical paper presentation, and writing up the final report.

Also special thanks to my beloved mother Puan Saadiah Binti Hasan and my father Mr Roslan Bin Dahalan for their prayers and special encouragement to me in order to complete this final year project. Last but not least, thanks to all my friends for their ideas, suggestion and assistance in completing this project.

ABSTRACT

As home network technologies are improving, sensors collecting environmental information such as temperature, humidity, and illumination in a building or a house are evolving. One of the many available home network technologies is fire detection. Many sensors have been developed for fire detection using closed-circuit television (CCTV) cameras or fiber-optical sensors. This project presents the application of zigbex wireless sensor/actuator network (WSAN) for fire detection home alarming system. The sensor node will sense the level of temperature and sends the data to the base node and actuator node. The results were display on the oscilloscope Graphical User Interface (GUI) whereas the actuator node would activate the alarm. It can be concluded that fire detection can be controlled wirelessly using zigbex WSAN test-bed.

TABLE OF CONTENTS

Cover I	Page			i
Approv	al			ii
Declara	ation			Hi
Acknow	wledgements			iv
Abstrac	t			v
Table		of	Contents	vi
List	of		Abbreviations	viii
List	O	f	Figures	ix
List	(of	Tables	X
СНАРТ	TER 1			1
INTRO	DUCTION			1
1.1	Project Overview			1
1.2	Problem Statement.			2
1.3	Objectives			2
1.4	Significance	of	Project	3
1.5	Scope	of	Project	3
1.6	Organization	of	Thesis	4
CHAP'	ΓER2			6
LITERA	ATURE REVIEW			6
2.1	Fire Detction			6
2.2	Wireless Sensor Ne	etwork		8
2.3	Zigbex			9
2.4	Zigbex Relay Module			
2.5	Zigbex USB Modu	le		13
2.6	TinyOS			14
2.7	NesC Language			16
2.7	.1 Interface			17
2.7	.2 Component			18

2.8	MAC Protocols for Wireless Sensor Network	20
2.9	Related Work	21
CHAPTER 3		
METH	ODOLOGY	22
3.1	Introduction	22
3.2	Sensor Node	23
3.3	Base Node	25
3.4	Actuator Node	25
3.5	Relay Module Node	26
3.5	5.1 TestRelay	27
3.7	Zigbex System Program	28
3.8	Zigbex System Design	30
CHAP	TER4	32
RESUI	LTS AND DISCUSSIONS	32
4.1	Introduction	32
4.2	Oscilloscope GUI	33
CHAPTER 5		
CONC	LUSION AND RECOMMENDATION	36
5.1	Conclusion	36
5.2	Recommendation	
REEEL	RENCES	
	UDICES	