## Simulation and Performance of BPSK and 8-PSK in CDMA by Using Cyclic Codes for Digital Communication System

Thesis submitted to the Faculty of Electrical Engineering,
Universiti Teknologi MARA in fulfilment of the requirement for the
Bachelor of Electrical Engineering (Hons.)



MOHD FAZRI ABD LATIF FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

**MAY 2008** 

## **ACKNOWLEDGEMENT**

First and foremost, I would like to praise Allah S.W.T for giving me the approval and strength to complete this final year project report lucratively.

With my spacious sense of appreciation to my project supervisor, Pn. Suzi Seroja Sarnin, I would like to give her special thanks for her guidance, support, ideas, comment and encouragement. Without her I will not be able to finish my project in the given time successfully and effectively.

Besides that, I would like to thank all the people who have contributed either directly or indirectly for the accomplishment of this project, especially to my family members who have given me a lot of support and encouragement.

Finally, I would also like to convey my appreciation to all my friends for their support and encouragement to complete my project.

## **ABSTRACT**

This project illustrates the simulation and performance of BPSK and 8-PSK in CDMA. This model consists of transmission channel, transmitter and receiver. This simulation is deal with two channels, channel one is using BPSK and channel two is using 8-PSK. Cyclic codes is use to encode and decode the digital signal of the two channels before modulation and after demodulation process. The main objective is to compare and identify which channel is better by analyzing the performance of both channels. Besides, this project will show why CDMA is the most excellent multiple access compare to other. This project is simulated via Matlab Version 7.5.

## **TABLE OF CONTENTS**

| CHAPTER   | TIT  | PAGE                            |    |
|-----------|------|---------------------------------|----|
|           | DEC  | i                               |    |
|           | ACK  | ii                              |    |
|           | ABS  | iñ                              |    |
|           | LIST | iv                              |    |
|           | LIST | vi                              |    |
|           | LIST | vii                             |    |
| CHAPTER 1 | INT  |                                 |    |
|           | 1.1  | Objective                       | 1  |
|           | 1.2  | Scope of Work                   | 1  |
|           | 1.3  | Digital Communication System    | 2  |
|           | 1.4  | Modulation Technique            | 3  |
|           | 1.5  | Code Division Multiple Access   | 3  |
|           | 1.6  | Cyclic Codes                    | 4  |
|           | 1.7  | Matlab Simulation               | 4  |
| CHAPTER 2 | LITI |                                 |    |
|           | 2.1  | Phase-Shift Keying              | 5  |
|           |      | 2.1.1 Binary Phase-Shift Keying | 6  |
|           |      | 2.1.2 8 Phase-Shift Keying      | 10 |
|           | 2.2  | Code Division Multiple Access   | 15 |
|           |      | 2.2.1 CDMA Spectrum             | 16 |

|            |                           | 2.2.2              | Spread Spectrum Features of CDMA      | 17 |  |
|------------|---------------------------|--------------------|---------------------------------------|----|--|
|            | 2.3                       | Cyclic Codes       |                                       | 20 |  |
|            |                           | 2.3.1              | Cyclic Codes Polynomials              | 20 |  |
|            |                           | 2.3.2              | Encoding Cyclic Codes                 | 21 |  |
|            |                           | 2.2.3              | Decoding of Cyclic Codes              | 24 |  |
|            |                           | 2.2.4              | By Using Dividing Polynomial          | 25 |  |
|            |                           | 2.2.5              | Additive White Gaussian Noise Channel | 26 |  |
| CHAPTER 3  | METHODOLOGY               |                    |                                       |    |  |
|            | 3.1                       | Block              | c Diagram and Flow Chart              | 28 |  |
|            |                           |                    |                                       |    |  |
| CHAPTER 4  | RESULTS AND ANALYSIS      |                    |                                       |    |  |
|            | 4.1                       | Simulation Result  |                                       |    |  |
|            | 4.2                       | Performance Result |                                       |    |  |
|            | 4.3                       | Tabul              | ated Result                           | 44 |  |
| CHAPTER 5  | DISCUSSION AND CONCLUSION |                    |                                       |    |  |
|            | 5.1                       | Discussion         |                                       |    |  |
|            | 5.2                       | Conclusion         |                                       | 46 |  |
| CHAPTER 6  | FUT                       | JRE WORK           |                                       |    |  |
| REFERENCES |                           |                    |                                       | 48 |  |
| APPENDIX   |                           |                    |                                       | 50 |  |