MICROSTRIP DIPOLE ARRAY ANTENNA FOR DIGITAL BROADCASTING APPLICATION

Thesis presented in partial fulfillment for the award of the

Bachelor of Electrical Engineering (Hons)

UNIVERSITI TEKNOLOGI MARA

I

ACKNOWLEDMENT

I am most grateful to our mighty Allah S.W.T who gave me the strength and thought in preparing this thesis. Therefore, I would like to express my gratitude to the persons and all the parties who been involved directly and indirectly in completing this thesis.

First of all, I would like to express my appreciation and acknowledgement to my supervisor Madam Noor Hasimah Binti Baba, for all her help, guidance and unfailing support and contribution of ideas in preparing this final year project.

My special thanks to all the lecturers of the Faculty of Electrical Engineering, Universiti Teknologi Mara, Shah Alam who have helped me attain this level education. I am also indebted to all my friends for their continuous support and encouragement.

Finally, special thanks to my beloved family, who never stops giving me their encouragement and full support in order for me to complete this thesis.

This all comes down to what you all mean to me. Thank you.

ABSTRACT

This work will describe the design, simulation and fabrication of microstrip dipole array antenna. The microstrip dipole array antenna has been designed and fabricated for digital broadcasting application.

Centered at around of 2.6 GHz from the bandwidth of 2.54 GHz to 2.65 GHz, the antenna is designed on the FR4 substrate with a permittivity of 5, a thickness of 1.6mm and tangent loss of 0.02. Computer Simulation Technology (CST) Microwave Studio software is used to design and simulate the required response.

The fabricated antenna is measured using Vector Network Analyzer (VNA) and Antenna Training Measurement System (ATMS). The results are compared between the simulation and measurement.

The results showed that for the dipole array antenna with quarter wavelength matching, the return loss and VSWR obtained are -23.528dB and 1.143 respectively. Meanwhile the measured results for return loss and VSWR are -20.454dB and 1.21 respectively.

Meanwhile, microstrip dipole array antenna without quarter wavelength matching the return loss and VSWR obtained are -26.946dB and 1.094 respectively. Meanwhile the measured results for return loss and VSWR are -8.713dB and 2.158 respectively.

Thus it can be concluded that, it is important to ensure the matching network used is quarter wavelength in order to obtain a better results between the simulation and measurement.

TABLE OF CONTENTS

TITLE	i
APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATION	xiii

CHAPTER	CONTENTS				PAGE	
1	INTRODUCTION				1	
	1.1 Background of Study					
	1.2 Problem Stateme	ent			2	
	1.3 Objective				3	
	1.4 Scope of Study				3	
	1.5 Outline of Thesis	5			4	
2	LITERATURE RE	VIEW			5	
	2.1 Introduction	of	Microstrip	Antenna	5	
	2.1.1 Dipole Ant	tenna			7	
	2.2 Parameter	of	An	tenna	9	
	2.2.1 Return Los	S			9	
	2.2.2 Radiation I	Pattern			9	
	2.2.3 Gain				11	
	2.2.4 Voltage Standing Wave Ratio (VSWR)					
	2.2.5 Bandwidth				12	
	2.2.6 Input Impe	dance			12	
	2.3 Feeding Method				13	
	2.3.1 Microstrip	Line Feedi	ng		13	
	2.3.2 Coaxial Fe	eding			14	

	2.3.3 Ap	erture Couplir	ng			14
	2.3.4 Pro	oximity Coupli	ing			15
2.4	Method		of	Anal	ysis	16
	2.4.1 Tra	ansmission Lir	ne Model			17
	2.4.2 Ca	wity Model				18
	2.4.3 Fu	ll Wave Mode	1			19
2.5	Antenna	Arrays				20
M	ETHOD	OLOGY				23
3.1	Introduc	ction				23
3.2	Design S	Specifications				23
3.3	Flowcha	urt				24
3.4	Designin	ng Dipole Arra	y Antenna			26
	3.4.1 M	atching Techni	que			27
3.5	Designin	ng Microstrip I	Dipole Arra	ay Antenna	using CST	28
	3.5.1 CS	ST Program M	ode			28
	3.5.2 W	orking Plane T	ypes			29
	3.5.3 De	esign Unit				29
	3.5.4 W	orking Plane P	roperties			30
	3.5.5 Su	bstrate	of	the	Antenna	30
	3.5.6 M	odeling Ground	d Surface			32
	3.5.7 M	odeling the Dij	pole Anten	na		33
	3.5.8 M	odeling the 50	ohm, 70oh	m and 1000	hm feedline	34
	3.5.9 M	odeling 50ohm	Port Mod	e		35
	3.5.10 B	Boolean Mode				36
3.6	Simulati	on Process				37
	3.6.1 Se	tting up the W	aveguide H	Port		37
	3.6.2 Fre	equency Range	e			38
	3.6.3 Bc	oundary Condit	ion			39
	3.6.4 Fa	rfield Monitor				40
	3.6.5 Tr	ansient Solver	Setting			41
3.7	Antenna	Fabrication				42
3.8	Measure	ement Equipme	ents			43
	3.8.1 Ve	ector Network	Analyzer (VNA)		43