BOTTOM-COUPLED PARALLEL-CASCADED RING RESONATORS PASSBAND FILTER

Project report presented in the partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITITEKNOLOGI MARA

SITINASLINA BINTIDARAME Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful.

First of all, I would like to express my greatest gratitude to ALLAH the Almighty, for His help and guidance during the course of life and moment of truth.

I would like to express my appreciation and sincere gratitude to my supervisor, Dr Mohd Khairul Mohd Salleh for his continual support, endless encouragement and patience towards completing the research and for allowing the chance to work under his guidance, opinion and full support in completing this project. Without his superior knowledge in this field of study, this project might not be done properly. All the kindness and understandings will always be remembered.

Appreciation also goes to all my colleagues from Universiti Teknologi MARA for their helps and encouragement.

My greatest appreciation to very important persons in my life is my family that gives me a lot of moral support and encouragement.

Last but not least, to Prof. Dr. Zaiki Bin Awang and his staffs of Microwave Technological Centre (MTC) for providing all the facilities to carry out this project and to all others not mentioned but whose help been tremendous, I express my sincere thanks and appreciation. Thank you.

ABSTRACT

In this paper, a bottom - coupled parallel - cascaded ring resonators passband filter is designed at 3GHz center frequency. Based on ring topology, the filter is design by cascading of two ring resonators with two coupled lines are connected in parallel at the input and output port. The purpose of this new topology design is to know the response of the filter. The number of poles will be increased from 2nd order to 4th order because of having the cascading ring resonators and two of coupled lines. The filter is realized using FR4 substrate with a relative dielectric constant of 5.4, thickness of 1.6 mm and loss tangent of 0.02.

TABLE OF CONTENTS

CHAPTER				PAGE	
	DECLARATION				
	DEDICATION				
	ACKNOWLEDGEMENT				
	ABST	RACT		vi	
TABLE OF CONTENTS					
LIST OF FIGURE					
LIST OF TABLE					
	LIST OF ABBREVIATIONS/SYMBOLS			xii	
1		RODU	CTION	2	
	1.1	Backg	round	2	
	1.2	Proble	m Statement	4	
	1.3	Objectives		5	
	1.4	Scope	of Work	5	
	1.5	Thesis	Organization	6	
CHAPTER 2	: LIT	ERATU	JRE RIVIEW	7	
	2.1	Introd	uction	8	
		2.1.1	Microwave Filter	8	
		2.1.2	Quarter-Wave Side-Coupled Ring Filter	10	
		2.1.3	Ring Resonator Synthesis	11	
		2.1.4	Microstrip structure	13	
	2.2	Past R	esearch	16	
CHAPTER 3	: ME1	FHOD (DLOGY	18	
	3.1	Flowchart		18	
	3.2	Design	n Procedure	20	
		3.2.1	Ring Filter Design	20	
		3.2.2	Dimension	23	
		3.2.3	Print Layout	24	
		3.2.4	Laminating Film	24	

	3.2.5	UV Exposure	24
	3.2.6	Etching a Circuit Board	25
	3.2.7	Soldering	26
3.3	Measu	irement	27
	3.3.1	Vector Network Analyzer	27
	3.3.2	Calibration of Vector Network Analyzer	28

33

CHAPTER 4 : FILTER REALIZATION AND ITS

PERFORMANCE

4.1	Measurement Result And Data Observation		
	4.1.1	Measurement Result of Ring filter at 3 GHz	33
4.2	Comp	arison between Simulation Result and	36
	Measu	rement Result and the Analysis of the	
	Performance		
	4.2.1	Comparison between simulation and	36
		measurement result	
	4*2.2	Comparison between simulation and	37
		measurement result of return loss, SI 1	
		and insertion loss, S12	

CHAPTER 5 : CONCLUSION AND FUTURE DEVELOPMENT 39

5.1	Conclusion	40
5.2	Recommendation For Future Work	40

REFERENCES	41
APPENDIXES	44