UNIVERSITI TEKNOLOGI MARA

A LOW FREQUENCY OF DIPLEXER BASED ON SUBSTRATE INTEGRATED WAVEGUIDE (SIW) TECHNOLOGY WITH CIRCULAR CAVITY

NURUL NADIAH BINTIMOHD HUSIN

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

July 2015

i

ABSTRACT

This paper presents the prototype design of S-band diplexer using Substrate Integrated Waveguide Technology (SIW) with circular cavity. The diplexer will operate at S-band frequencies which related to the mobile tv and satellite radio application. SIW technology and circular cavity is used to design the diplexer due to its attractive advantage of reduction in size and low cost. The simulation has been performed by using CST Microwave Studio.

Keywords: substrate integrated waveguide (SIW), diplexer, microstrip, S-band, circular cavity

ACKNOWLEDGEMENTS

In the name of greatest All mighty ALLAH who has always bless me with potential knowledge and success. First and foremost, I would like to thank my main supervisor Dr. Aziati Husna Awang, for her advice, invaluable guidance and patience in numerous and long discussions throughout the period of my dissertation.

Thousand thanks to my friends and people in ARC Laboratory who help me during my hard times when I need their assistance during simulation.

I am especially thankful to my husband, parents and family who had always provided me the courage, strength, best wishes, moral and financjal support during my journey in UITM Shah Alam.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS / NOMENCLATURE	xii

CHAPTER ONE: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	2
1.3	Research Objective	3
1.4	Project Scope	3

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	4
2.2	Substrate Integrated Waveguide (SIW)	4
2.3	Circular Waveguide	8
	2.3.1 TM Modes	8
2.4	Transition between Planar Circuit and SIW	10

CHAPTER THREE: METHODOLOGY

3.1	Introduction	13
3.2	Design and Implementation	14

	3.2.1	2.1 Substrate Material									14
	3.2.2	2 Single Mode SIW					filter				
3.3	SIWI	Diplexer									16
	3.3.1	Direct	casc	ade	of	2	circ	ular	cavi	ties	16
	3.3.2	Extended	vias at	Higher	Channe	1					17
	3.3.3 Extended vias at Both Channels										18
	3.3.4 Additional vias at transition port										18
	3.3.5	Height	at	the	lower	side	of	extend	led	vias	19
CH	APTE	R FOUR :	RESU	JLT AN	ID ANA	LYSIS					
4.1	Introc	luction									20
4.2	Single	e Mode SIV	V Filter	ſ							20
4.3	Direc	t cas	scade	of		2	circula	r	caviti	es	21
4.4	.4 Extended vias at Higher Channel									22	
4.5	.5 Extended vias at Both Channels								22		
4.6	.6 Additional vias at transition port								24		
4.7	Heigh	nt at	the	low	er	side	of	extended	d	vias	27

CHAPTER FIVE: CONCLUSION

28

REFERENCES	29
AUTHOR'S PROFILE	31