UNIVERSITI TEKNOLOGI MARA

THE PERFORMANCE STUDY OF BER BY USING DIFFERENT TECHNIQUES OF CHANNEL ESTIMATION FOR MIMO-OFDM

MOHD HAZWAN BIN MAT ALI

Thesis submitted in fulfillment of the requirements for degree of

Bachelor of Engineering (Hons.) Electronic (Communication)

Faculty of Electrical Engineering

i

JULY 2017

ACKNOWLEDGEMENTS

I am feeling grateful and thanks to Allah S.W.T gave me an opportunity, courage and strength to face all challenges for completing this project. First and foremost, I want to dedicate the acknowledgement to my supervisor, Mdm. Suzi Seroja Binti Samin for her guidelines and support to complete this project. I also would like to thanks to Dr. Darmawaty Ali and Miss Wan Norsyafizan Wan Muhamad for their evaluation on my project presentation. Last but not least, thanks to parents, family, friends, lectures and Faculty of Electrical Engineering in UiTM Shah Alam for their contribution in this project along the completing this project.

ABSTRACT

The high transmission data rate, spectral efficiency and reliability are necessary in the future of mobile communications wireless systems. However, there are several problem on the inference that had been faced among the signals, complexity of transmission system and effected the spectral efficiency. The way that used to prevent these problem is by using Orthogonal frequency division multiplexing (OFDM) is another common technique in eliminating the inter symbol interference (ISI) which give the efficient high speed transmission for the best performance. To get a better performance of OFDM, the techniques that were applied to the systems are Discrete Fourier Transform (DFT) based channel estimation and Least Mean Square (LMS) channel estimation. They reduced the noise and help increasing the efficiency in the systems. To get the different performance, the comparison has been made by applying the Multiple Input Multiple Output (MEMO) OFDM with DFT channel estimation and LMS channel estimation. By applying the channel estimation with the multiple antenna system at transmitter and receiver, there will be a better performance of the OFDM system. The result of the performance will be presented with Bit Error Rate (BER) against Energy Bit per Noise Density (Eb/No) that has been done using simulations software MATLAB. The result will shows the BER against Eb/No become lower.

TABLE OF CONTENTS

APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
LIST OF FIGURE	ix
LIST OF TABLE	X
LIST OF SYMBOLS AND ABBREVIATIONS	xi
CHAPTER 1: INTRODUCTION	
1.1 BACKGROUND OF STUDY	1
1.2 PROBLEM STATEMENT	2
1.3 OBJECTIVES	3
1.4 SCOPE OF WORK	3
1.5 THESIS ORGANIZATION	3
CHAPTER 2: LITERAUTURE REVIEW	
2.1 INTRODUCTION	5
2.2 ORTHOGONAL FREQUENCY DIVISION	6
MULTIPLEXING (OFDM)	
2.3 MULTIPLE-INPUT-MULTIPLE-OUTPUT (MJMO)	7
2.4 BIT ERROR RATE (BER)	9
2.5 ENERGY PER BIT TO NOISE POWER SPECTRAL	9
DENSITY RATIO (Eb/No)	
2.6 SIGNAL TO NOISE RATIO (SNR)	10
2.7 QUADRATURE AMPLITUDE MODULATION (QAM)	10
2.8 MODULATION	12
2.9 DISCRETE FOURIER TRANSFORM (DFT) BASED	13
CHANNEL ESTIMATION	
2.10 LEAST MEAN SQUARE (LMS) CHANNEL	
ESTIMATION	15
2.11 MINIMUM MEAN SQUARE ERROR (MMSE)	

2.11 ADDITIVE WHITE GAUSSION NOISE (AWGN)	16
2.12 MATLAB SOFTWARE	16
	17
CHAPTER 3: METHODOLOGY	
3.1 INTRODUCTION	19
3.2 FINAL YEAR PROJECT 1 (FYP1)	19
3.2.1 PROJECT TITLE	19
3.2.2 PROJECT PROPOSAL	20
3.3 FINAL YEAR PROJECT 2 (FYP2)	20
3.3.1 PROJECT DEVELOPMENT	20
3.3.2 PROJECT DOCUMENTATION	21
3.4 WORKFLOW OF THE PROJECT	22
3.5 OFDM BASEBAND SYSTEM	24
3.6 FLOWCHART OF THE PROJECT	25
CHAPTER 4. RESULT AND DISCUSSION	
4.1 INTRODUCTION	27
4.1 INTRODUCTION	27

	- ·
4.2 RESULT SIMULATION	28
4.2.1 MIMO-OFDM Performance with Different	28
Channel Estimation Techniques by using 2 by 2	
Antenna Configuration	
4.2.1.1 The Performance Comparison of BER	31
vs Eb/No of MIMO-OFDM System with	
Different Channel Techniques by Using Four	
by Four Antenna.	
4.2.2 MIMO-OFDM Performance with Different	32
Channel Estimation Techniques by using 4 by 4	
Antenna Configuration	
4.2.2.1 The Performance Comparison of BER	35
vs Eb/No of MIMO-OFDM System with	
Different Channel Techniques By Using Four	
by Four Antenna.	
4.3 DISCUSSION	

36