ANALYSIS AND SIMULATION OF HANDOFF SCENARIO FOR WIRELESS COMMUNICATION NETWORK

This thesis presented in partial fulfillments for the award of the Bachelor of Electrical Engineering (Hons.) UNIVERSITITEKNOLOGI MARA

> DARUL RIDZUAN BIN MUHAMAD HALIB Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN MALAYSIA

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere appreciation and gratitude to my supervisor Prof. Madya Norasimah Khadri for her unfailing guidance, knowledge and support. She has provided me with invaluable advice and persistent encouragement during my final project at Universiti Teknologi MARA and without her assistance this thesis would not have been possible.

Special thanks are dedicated to my family for all the love, encouragement and support to produce the best work that I could.

Finally I would like to extend my thanks and appreciation to all my friends and to those who have made contributions to this report and in ordered to accomplish my final year project. I appreciate for the all the options, suggestion and comments. Thank you.

ABSTRACT

This project presents an overview of the handoff scenario for wireless communication network. Handoff is an essential element of wireless communications. Efficient handoff algorithms are a cost-effective way of enhancing the capacity and QoS of wireless systems.

This project presents different aspects of handoff and discusses handoff related features of cellular systems. It involved a brief study of the various parameters affecting the handoff procedure. It includes a Matlab implementation of the received power (with gaussian noise) versus the distance in the soft handoff case for a mobile moving between two base stations separated by distance *d*, along a straight line with fixed velocity.

This project report also presents the analysis of handoff for real data from the cellular network provider. The analysis made also for a mobile moving between two base stations with fixed velocity.

TABLE OF CONTENTS

CHAPTER	PAGE
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	X
LIST OF ABBREVIATIONS	xi

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Objective	2
1.3	Methodology	3

CHAPTER 2

HANDOFF IN WIRELESS MOBILE NETWORKS

2.1 Overview of Handoff in M	Iobile Networks		5
2.2 Types of Handoffs			6
2.2.1 Idle Handoff			6
2.2.2 Traffic Handoffs			7
2.2.3 Hard Handoff			7
2.2.4 Soft Handoff			9
2.3 Objectives	of	handoff	12

CHAPTER 3

ANALYSIS OF HANDOFF PERFORMANCE

3.1 Idle Handoff in Mobile Systems				14
3.2	Traffic Model			18
	3.2.1 El-Dolil et al.'s Traffic	Model (One-Di	mensional)	18
	3.2.3 Steele and Nofal's Traffic Model (Two-Dimensional)			19
	3.2.4 Zeng et al.'s Approximated Traffic Model		del	20
	(Any Dimensional)			
3.3	Hard Handoff			2'1
	3.3.1 Handoff Dete	ction	Algorithms	21
	3.3.2 Hysteresis and the "Pin	g-Pong" Effect		27
3.4	Soft handoff.			29
	3.4.1 Soft Handoff (Forward I	Link)		30
	3.4.2 Soft Handoff (Reverse I	Link)		30
	3.4.3 Softer Handoff (Reverse	Link)		30
3.5	Benefit of Soft Handoff			31

CHAPTER 4

HANDOFF IN CELLULAR NETWORK

4.1 Types of cellular structures	33
4.1.1 Macrocells	33
4.1.2 Microcells	34
4.1.2.1 Cell plan in microcells	36
4.1.3 Macrocell/Microcell Overlays	38
4.2 Handoff Protocols	39
4.2.1 Network-Controlled Handoff	39
4.2.2 Mobile-Assisted Handoff	40
4.2.3 SHO Handoff	41
4.2.4 Mobile-Controlled Handoff	41