# INVESTIGATION ON INTEGRATED ARCHIMEDEAN SPIRAL PATCH ANTENNA WITH LED OPERATING AT 2.4GHZ FOR WLAN APPLICATION

This thesis is presented in partial fulfilment for the award of the Bachelor of Engineering Electronic (Communication) with honours. UNIVERSITI TEKNOLOGI MARA (UITM)



RAZIN ARIF BIN RAMLI FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA, 40450 SHAH LAM, SELANGOR, MALAYSIA

10 JULY 2015

#### ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Almighty God for giving the guidance and strength to me in making this works a success. I would like to express my sincerest gratitude to those who helped in this long journey.

I would like to take this opportunity to express my gratitude to my respective supervisor and co-supervisor, En Mohd Nor Md Tan and Pn Suhaila Subahir for all the guidances, valuable advices, great ideas and continuous supports throughout the preparation for this works until this thesis is completed. I would also like to express my gratitude to every members of the Antenna Research Group (ARG) for supporting the research work and for every guidance throughout the works of this project. Besides, I would like to express my special thanks to En. Mohd Khairil, Research Officer from Microwave Technology Centre (MTC) for usage of test and equipment to complete this work.

Nevertheless, my special thanks to my family for giving a never ending supports, encouragement and advices to complete this works. Last but not least, to my beloved friends, thank you for giving supports in making this works a success. I would like to thank to all my friends for sharing ideas and helping me to complete this project.

#### ABSTRACT

This work proposed the design of Archimedean Spiral Patch Antenna integrated with Surface Mount Device (SMD) Light Emitting Diode (LED) operating at 2.4GHz for Wireless Local Area Network (WLAN) application. The antenna was designed and simulated using Computer Simulation Technology (CST) software. Firstly, the antenna design was simulate without the LED. After the results obtained met the requirements, the LEDs were added onto the radiating patch in the simulation. Upon achieving an optimum performance, the antenna was implemented on a FR-4 material with thickness of 1.6mm and dielectric constant of 4.3. The LED was integrated with the radiating patch in parallel connection in order to have lower voltage. This design of antenna was proposed due to replace the plasma antenna which has several disadvantages and the LED was the suitable lighting source that could replace the plasma antenna. Experimental investigation was done using Vector Network Analyzer (VNA) to verify the return loss, VSWR, gain and radiation pattern of the designed antenna. Both the simulation and experimental results were then compared and analysed. The results had been confirmed that the design of the patch antenna can operate at 2.4GHz and it works well as an illumination. The antennas are reasonably well matched at their corresponding frequency of operations.

# **TABLE OF CONTENTS**

| APPROVAL    |                         |                                    | î    |  |  |
|-------------|-------------------------|------------------------------------|------|--|--|
| DECLARAT    | TION                    |                                    | ii   |  |  |
| ACKNOWL     | EDGEM                   | IENT                               | iii  |  |  |
| ABSTRACT    | I                       |                                    | iv   |  |  |
| TABLE OF    | CONTE                   | NTS                                | v    |  |  |
| LIST OF FIG | GURES                   |                                    | viii |  |  |
| LIST Of TA  | BLES                    |                                    | x    |  |  |
| LIST OF EQ  | UATIO                   | NS                                 | xi   |  |  |
| LIST OF SY  | MBOLS                   | AND ABBREVIATIONS                  | xii  |  |  |
| CHAPTER 1   | l                       |                                    |      |  |  |
| INTRODUC    | TION                    |                                    |      |  |  |
| 1.1         | BACK                    | GROUND OF STUDY                    | 1    |  |  |
| 1.2         | PROB                    | LEM STATEMENT                      | 3    |  |  |
| 1.3         | OBJE                    | OBJECTIVES                         |      |  |  |
| 1.4         | SCOPE OF STUDY          |                                    |      |  |  |
| 1.5         | THES                    | IS ORGANIZATION                    | 5    |  |  |
| CHAPTER 2   | 2                       |                                    |      |  |  |
| LITERATU    | RE REV                  | IEW                                |      |  |  |
| 2.1         | INTRODUCTION TO ANTENNA |                                    |      |  |  |
|             | 2.1.1                   | Microstrip Antenna                 | 6    |  |  |
|             | 2.1.2                   | Archimedean Spiral Antenna         | 8    |  |  |
| 2.2         | WIRE                    | LESS COMMUNICATION                 | 8    |  |  |
| 2.3         | ANTE                    | NNA PROPERTIES                     | 9    |  |  |
|             | 2.3.1                   | Input Impedance                    | 9    |  |  |
|             | 2.3.2                   | Voltage Standing Wave Ratio (VSWR) | 9    |  |  |
|             | 2.3.3                   | Return Loss                        | 10   |  |  |
|             | 2.3.4                   | Directivity and Gain               | 10   |  |  |
|             | 2.3.5                   | Radiation Pattern                  | 11   |  |  |
|             | 2.3.6                   | Bandwidth                          | 11   |  |  |
| 2.4         | FEED                    | TECHNIQUES                         | 12   |  |  |
|             | 2.4.1                   | Coaxial Feed Technique             | 12   |  |  |

| 2.5 | LIGHT EMITTING DIODE (LED) |                                |    |
|-----|----------------------------|--------------------------------|----|
|     | 2.5.1                      | Surface Mount Device (SMD) LED | 13 |

## CHAPTER 3

### METHODOLOGY

| 3.1 | INTRODUCTION        |                     |                  | 14          |     |    |
|-----|---------------------|---------------------|------------------|-------------|-----|----|
| 3.2 | FLOWCHART           |                     |                  | 14          |     |    |
| 3.3 | ANTE                | TENNA SPECIFICATION |                  |             | 17  |    |
| 3.4 | ANTE                | NNA CONF            | IGURATIONS       |             |     | 18 |
|     | 3.4.1               | Archimede           | ean Spiral Struc | ture Design |     | 18 |
|     | 3.4.2               | Dimension           | of the Antenna   | 1           |     | 19 |
|     | 3.4.3               | Integration         | of Antenna wi    | th LED      |     | 21 |
|     | 3.4.4               | Feeder Net          | twork            |             |     | 22 |
| 3.5 | SIMU                | LATION              | PROCESS          | USING       | CST | 23 |
|     | MICR                | OWAVE               |                  |             |     |    |
|     | 3.5.1               | Antenna T           | ypes             |             |     | 24 |
|     | 3.5.2               | Unit Prope          | erties           |             |     | 25 |
|     | 3.5.3               | Frequency           | Range and Fiel   | ld Monitor  |     | 26 |
|     | 3.5.4               | Designing           |                  |             |     | 27 |
|     | 3.5.5               | Design of           | coaxial feed     |             |     | 30 |
|     | 3.5.6               | Waveguide           | e Port           |             |     | 31 |
|     | 3.5.7               | Time Dom            | ain Solver       |             |     | 31 |
| 3.6 | FABRICATION PROCESS |                     |                  |             | 32  |    |
|     | 3.6.1               | Antenna P           | rototype         |             |     | 32 |
| 3.7 | MEAS                | UREMENT             | OF THE ANTI      | ENNA        |     | 33 |
|     | 3.7.1               | Vector Net          | twork Analyzer   | (VNA)       |     | 33 |

## CHAPTER 4

## **RESULT AND DISCUSSION**

| 4.1 | INTRO | DUCTION                       | 34 |
|-----|-------|-------------------------------|----|
| 4.2 | RESU  | LT                            | 34 |
| 4.3 | SIMU  | LATION RESULT                 | 34 |
|     | 4.3.1 | Return Loss (S11) without LED | 35 |