A LOG PERIODIC DIPOLE ARRAY ANTENNA FOR UWB APPLICATIONS

This project report is presented in partial in fulfillment for the award of Bachelor of Engineering (Hons.). Electrical

UNIVERSITI TEKNOLOGI MARA MALAYSIA

(UiTM)

NOOR FATHIYAH BINTI ABU HASSAN FACULTY OF ELECTRICAL ENGINEERING tfg^T^&f UNIVERSITI TEKNOLOGI MARA MALAYSIA W 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

First of all, I would like to grace All the Mighty Allah, The Only Beneficent God for helping me faced all the circumstances during the research and fulfills my hope to complete my Final Project successfully.

I would like to express my greatest appreciation to my supervisor, Mrs. Norfishah Ab Wahab, for her support and guidance in conducting the-design of LPDA antenna. Her enthusiasms are specially recognized.

I am grateful to all my friends especially for their support and encouragement throughout this Final Project. Last but not least, thank you to all that have involved and help me in completing this project. Thank you very much and may Allah bless all of you.

NOOR FATHIYAH BT ABU HASSAN

Faculty of Electrical Engineering Universiti Teknologi MARA Malaysia 40450 Shah Alam, Selangor.

ABSTRACT

This paper presents the design of a microstrip antenna type log periodic dipole array (LPDA) with eight elements. The operating frequency range for this antenna is at Ultra Wide Band (UWB) from 3.1 GHz to 10.6 GHz.

The antenna has been simulated using Computer Simulation Technology (CST) to obtain the response of return loss, VSWR and radiation pattern. This LPDA antenna was fabricated using FR-4 substrate with a dielectric constant of 4.9 and thickness of 1.6mm. Both simulated and measured results are compared, analyzed and presented in this paper.

TABLE OF CONTENTS

CHAPTER	DESCRIPTIONS	PAGE
	APPROVAL SHEET	Ι
	DECLARATION	II
	ACKNOWLEDGEMENT	III
	ABSTRACT	IV
	TABLE OF CONTENTS	V
	LIST OF FIGURES	VIII
	LIST OF TABLES	rx
	LIST OF ABBREVIATIONS	X
CHAPTER 1	INTRODUCTION	
1.1	Introduction	2
1.2 1.3	Objectives	4
	Scope of Works	5
1.4	Thesis Outline	7
CHAPTER 2	THEORETICAL BACKGROUIVD	8
2.1	Basic Antenna Concepts	9
	2.1.1 Introduction	9
	2.1.2 Wavelength	10
	2.1.3 Directivity	10

	2.1.4	Gain	11
	2.1.5	Impedance Matching	11
	2.1.6	Voltage Standing Wave Ratio	11
	2.1.7	Beamwidth	12
	2.1.8	Bandwidth	13
	2.1.9	Radiation Pattern	14
	2.1.10	Near and Far Fields	14
2.2	Dipole Antenna		
2.3	Micros	trip Antenna	17
	2.3.1	Advantages	19
	2.3.2	Disadvantages	19
2.4	Microstrip Dipole		20
2.5	Log Pe	riodic Antenna	22
	2.5.1	Dipole Array	22
2.6	Antenn	a Measurement	25
	2.6.1	Antenna ranges	25
	2.6.2	Equipment	25

CHAPTER 3	ANTENNA DESIGN AND PROCEDURE	27
3.1	Antenna Design	28
3.2	Simulation Process	31
3.3	Fabrication Process	32