
TRAVELLING IONOSPGERIC DISTURBANCE (TID) DURING THE OCCURRENCE OF GEOMAGNETIC STORM USING MAGDAS DATA

This thesis is submitted in partial fulfillment for the degree of the Bachelor of Engineering (Honours) in Electronic (Communication) UNIVERSITITEKNOLOGI MARA (UiTM)

Table of Contents

Decla	aration		
Ackn	owledge	ment	
Abstı	ill		
List of Figures			IV
List	of Table		
List	of Abbre	viations	VI
1	Introduction		
	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Scope of Works	4
	1.5	Thesis outline	5
2	Literature Review		
	2.1	Introduction	6
	2.2	Magnetic Data Acquisition (MAGDAS)	6
		2.2.1 MAGDAS/CPMN System	7
		2.2.2 MAGDAS/CPMN Stations	8
		2.2.3 Data Transfers	11
	2.3	Ionospheric Layers	12
		2.3.1 D Layer	13
		2.3.2 E Layer	13
		2.3.3 F Layer	14
	2.4	Travelling Ionospheric Disturbance (TIC)	14
	2.5	The Magnetphere	16
	2.6	Geomagnetic Storm	18
	2.7	Earth Magnetic Field	19
		2.7.1 Component of Magnetic Field	21

Summary

Appendix

Meth	odology	
3.1	Introduction	23
3.2	Material	23
	3.2.1 Data Source	24
	3.2.2 Software Development	26
	3.2.3 Procedure Process	28
	a)Earth Magnetic Field Element	29
3.3	Data Collection	31
3.4	Summary	31
Resu	lt and Discussion	
4.1	Introduction	32
4.2	Earth Magnetic Field Parameter	32
	4.2.1 H Component	32
	4.2.2 D Component	34
	4.2.3 Z Component	36
	4.2.4 F Component	37
4.3	Summary	39
Conc	clusion and Future Recommendations	
5.1	Conclusion	40
5.2	Future Recommendations	41
Refe	rences	42

Acknowledgement

First and foremost, I would like to express my highest gratitude to God, for his greatness and permission, praise to the Almighty Allah for his grant me healthy and patience to complete project on schedule. Outmost thanks goes to my beloved parents for their support either ideas, financial and also for their continuous motivation and encouragement throughout my life.

Highest appreciation is dedicated to my supervisor, Dr. Norsuzila bintiYa'acob for her visionary guidance, kindness, moral support and constant encouragement regarding to the final year project. This project also will not be successful without the cooperation and contribution from Institute of Space Science (ANGKASA), UKM Bangi for provides the relevant information and data.

Last but not least, I would like to express grateful feeling to my classmate and person who has contributed directly and indirectly in making this final project success. Not to forget, Universiti Teknologi MARA especially Faculty of Electrical Engineering for the opportunities they have been giving me to completing this project.

Abstract

Magnetic Data Acquisition System (MAGDAS) through its Circum-Pan Pacific Magnetometer Network (CPMN) is a real time system magnetometers. The ordinary data from the MAGDAS is one of the datar that can be used for research or studies of variations like magnetic storm and aurora sub storms. The earth magnetic data that obtain from MAGDAS can also be used as earth magnetic data observation for space events such as geomagnetic storm. Geomagnetic storms one of the event that can damage satellites disable electric power grids. This paper focuses on monitoring and analysis MAGDAS data during the occurrence of space events such as geomagnetic storms and during ionosphere events such as Travelling Ionospheric Disturbance (TID) at different stations. The raw data is taken from different MAGDAS unit which are supplied by the Space Environment Research Centre (SERC) Kyushu University, Japan. The data were taken at different station to see its characterization and the different of earth magnetic field.. Matlab program is used to simulate the MAGDAS data. Kp index also used as reference to identified the variations of ionosphere events. The results has been studies and analysis has been made. Result shown that there are 3 phase of geomagnetic storm occurrence. Through the earth magnetic field horizontal intensity (parameter H), TID have been detect. TID happen during occurrence of the aurora.