DESIGNING LOW PASS FILTER FOR RF APPLICATION

The thesis is presented as a partial fulfillment for the award of the Bachelor in Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA

> MOHAMMAD FAIRUZ BIN ISMAIL Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR

ACKNOWLEDGEMENT

The completion of the project marks the end of a challenging experience for me. I would like to express my gratitude to all those who helped me throughout the journey.

Firstly, I would like to take this opportunity to thank my supervisor Encik Mohd Nor Md Tan for his invaluable guidance, support and concern throughout this final year project. I am so grateful for his enthusiasm and constructive critics which I believe as a motivating factor to success in this project.

I would also like to express my thanks to Puan Nor Emileen and Mr. Ganggataran for their time and effort for proofing this thesis.

Finally I would like to extend my heartfelt gratitude to those who contributed either directly or indirectly to the success of this project. Sincerely no words can describe for the things that you all have done for me. Thank you.

ABSTRACT

This project focused on designing and building a low pass microstrip filter with a passband up to 3 GHz. The filter is intended to operate with other specifications: Equalripple *Chebychev* filter, passband ripple less than 0.5 dB and stopband attenuation at 6 GHz is more than 40 dB. This project was designed and simulated using CAD packages called *Genesys* and *HP Eesof Libra*. The microstrip laminates used was *Duroid/Rogers* 5872 with 0.5 mm substrate thickness and relative permittivity ζr equal to 2.33. The filter is then measured using a *Wiltron Scalar Network Analyzer* to obtain its precision.

TABLE OF CONTENTS

CHAPTER

3

PAGE

1	INTRODUCTION	i
	1.1 RF Circuit	1
	1.2 S-Parameters	2
	1.3 Filter	4
	1.3.1 Types of filter	5
	1.3.2 Filter Specifications	8
	1.3.3 Microstrip Low Pass Filter	10
	1.4 Methodology	11

2 MICROSTRIP

2.1 Introduction122.2 Quasi TEM Pattern132.3 Losses In Microstrip152.3.1 Conductor Loss152.3.2 Dielectric Loss152.3.3 Radiation Loss152.4 Characteristics Impedance Values16

DESIGN AND CALCULATIONS

3.1 Introduction	17
3.2 Design Procedures	
3.2.1 Filter Specifications	19
3.2.2 Number of elements	20
3.2.3 Prototypes values	21
3.2.4 Actual Values of Inductor and Capacitor	22

	3.2.5 Conversion to Distributed Elements	24
	3.2.6 Optimization Stage	27
4	SIMULATION	
	4.1 Introduction	28
	4.2 Computer Aided Design of Microwave Circuit	
	4.2.1 HP Eesof Libra	29
	4.2.2 Genesys	30
	4.3 Methods of Simulation	
	4.3.1 Method of Moments (MoM)	31
	4.3.2 Finite Elements Method (FEM)	32
	4.3.3 Transmission Line Modeling (TLM)	32

4.4 Optimization 33

5 FABRICATION

5.1 Introduction	34
5.2 Fabrication Technique	
5.3 Problems Encountered During Fabrication Process	37
5.4 Grounding	38

6 MEASUREMENT

6.1 Introduction	40
6.2 Equipment	40
6.3 Calibration	41
6.4 Measurement Procedures	42

7 RESULTS AND ANALYSIS

7.1 Introduction	43
7.2 Results and Analysis	
7.2.1 Lumped Elements Circuit (Genesys)	43