PROPAGATION STUDY OF MICROWAVE SIGNALS BASED ON RAIN ATTENUATION MODEL AT 18 GHz FOR LINK BUKIT LANJAN - TV3 SRI PENTAS

This project report is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA (MAY 2007)

ACKNOWLEDGEMENT

In the name of Allah, the most gracious and the most merciful, I would like to express my gratitude and appreciations to all of the followings in assisting me in completing my final year project.

The highest gratitude and appreciation goes to my supervisor, Associate Prof. Norasimah Khadri, for her invaluable support, advice and encouragement. Thank you for trusting and giving me the opportunity to carry out this project.

Not to forget my project-mates Fadhil Ismail and Bahrin Sujak Assistant Manager in WMS Telekom Malaysia for their opinion, cooperation and group discussions and brainstorming.

The thanks list would not be complete without included my parent, my bosses Pn Hamilah Isnin and Pn Fatimah Mohd Ariffin and the much important is to my employer Telekom Malaysia to support expenses during my studies in Universiti Teknologi MARA. Thank you for the support and understanding.

Lastly, I would like to say thanks to all the lecturers who have taught me in the past few years. Thanks for equipping me with knowledge. Without them there would be no such project at all.

Abstract

The usage of microwave signal above 10 GHz seems to be the best solution to the currently congested frequency band problems faced by most service providers. However the applications of this frequency region face another weaknesses / constraint i.e rain attenuation. This paper is to study and to present results on propagation study of microwave signals based on attenuation which is model at 18 GHz and using the microwave link between Bukit Lanjan and TV3 Sri Pentas stations. The study conducted by using the ITU-R standards based on formula $\gamma=\mathrm{kR}^{\alpha}$ and the results is presented by MATLAB application and also from TM Simulation Tools. The outcome from this study is hope could be used as the threshold in order to decide on future application of microwave frequencies above 10 GHz .

TABLE OF CONTENT

CHAPTER DESCRIPTION PAGE
ACKNOWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENT III
LIST OF FIGURES VII
LIST OF TABLES VIII
LIST OF GRAPHS IX
LIST OF ABBREVIATIONS X
1 INTRODUCTION 1
1.1 Introduction 1
1.2 Background of the Project 1
1.3 Rational of the Project 2
1.4 Problem Statement 3
1.5 Objective 4
1.6 Scope Of Work 5
1.7 Organisation of the Report 5
2 LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Wireless Supporting Information 7
2.2.1 Free Space Loss 7
2.2.2 Frequencies Above 10 GHz 8
2.2.3 Total Path Loss 9
2.2.4 Fading 9
2.2.5 Fade Margin 9
2.2.6 Fresnel Loss 10
2.2.7 Fresnel Zone 10
2.2.8 Fresnel Boundaries 10
2.2.9 Clearance 11
2.2.10 Refraction 11
2.2.11 Link Design 11
2.2.12 Beamwidth 12
2.2.13 Polarization 12
2.3.14 Multipath 13
2.2 Geometrical Optics 13
2.2.1 Reflecting Sphere 13
2.2.2 Partly Transparent Spheres, Rainbows 15
2.4 On Scattering And Absorption By Non-Spherical 16 Particles
2.4.1 Scattering And Absorption By A Cloud Of Particles 17
2.4.1.1 The Particle Cloud 17
2.4.1.2 Cloud Size Distributions 18
2.4.1.3 Modified Gamma Distribution 18
2.4.1.4 Lognormal Distribution 19
2.4.2 Scattering And Absorption By Clouds 19
2.5 Attenuation Due To Rain 20
2.5.1 Raindrop Size Distribution 21
2.6 ITU-R 837 21
2.7 Variability of Rain Drop Size Distribution 24
2.7.1 Rain Drop Size Distributions In India 25
2.8 Experiment Done by N.U.S. 25
2.9 Experimentation And Modeling 26
2.8.1.1 Experiment Results 26
2.8.1.2 Rain Attenuation Model 26
2.9 An Analytic Model Of Specific Attenuation Due To 27 Rain

