ISOLATION OF PROTEIN FROM WINGED BEAN (Psophocarpus tetragonolobus) AND LONG BEAN (Vigna unguiculata subsp. sesquipedalisis)

AHMAD HILMI BIN BASHARAL HAFI

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2016

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah S.W.T for his blessing to me in order to finish this study. I would like to express my thank to my supervisor, Madam Sarina binti Hashim for her understanding, teaching, guiding, patience, encouragement, and pushing me farther than I think I could go. To my ex-supervisor, Miss Aina binti Ismail, I also would like to thank her for helping and teaching me in the beginning of this project. To Lab Assistant in UiTM Pahang, I am very grateful for your assistance and suggestion during my project. To Faculty in Applied Science, thank for giving me the opportunity to write an honor thesis. I also would like to extend my appreciation to my family and friends for helping me survive all this stress from this year and not letting me to give up.

Ahmad Hilmi Bin Bashral Hafi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1:INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Significance of the Study	3
1.4	Objectives of the Study	3

CHAPTER 2:LITERATURE REVIEW

2.1	Protein		4
	2.1.1	Protein Function	4
	2.1.2	Protein Structure	5
2.2	Proble	em Used in Various Industries	5
	2.2.1	Food Industry	6
	2.2.2	Detergent Industry	6
	2.2.3	Medical Industry	6
	2.2.4	Application for biopolymer production	6
2.3	Plant	Based Protein	7
2.4	Туре	of Vegetables Samples and Its Chemical Composition	7
	2.4.1	Winged bean	8
	2.4.2	Long bean	10
2.5	Metho	ods of Protein Extraction	12
	2.5.1	Alkaline extraction method	13
	2.5.2	Biuret test	14
	2.5.3	Spectrophotometer	14
	2.5.4	Protein purification	14

CHAPTER 3:METHODOLOGY 3.1 Materials

Materials	15
3.1.1 Raw materials	15
3.1.2 Chemicals	15
3.1.3 Apparatus and equipment	15

3.2 Me	Metho	ethods	
	3.2.1	Alkaline extraction of winged bean and long bean	18
	3.2.2	Biuret test	18
	3.2.3	Spectrophotometer of protein	19
	3.2.4	Protein precipitation	20

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Vegetables Extraction by Alkaline Methods	21
	4.1.1 Extracted Solution	22
	4.1.2 Biuret test	24
	4.1.2.1 Biuret Test for Albumin	26
	4.1.2.2 Biuret Test for Winged bean	26
	4.1.2.3 Biuret Test of Long bean	27
4.2	Spectrophotometer of Protein	27
	4.2.1 Spectrophotometer of Protein from Albumin	28
	4.2.2 Spectrophotometer of Protein from Winged bean	29
	4.2.3 Spectrophotometer of Protein from Long bean	29
4.3	Protein Precipitation	30
4.4	Comparison of Protein Extraction	31
4.5	Suggestion and Recommendation	33

CHAPTER 5: CONCLUSION AND RECOMMENDATION 35

CITED REFERENCES	36
APPENDICES	39
CURRICULUM VITAE	41

ABSTRACT

ISOLATION OF PROTEIN FROM WINGED BEAN (Psophocarpus tetragonolobus) AND LONG BEAN (Vigna unguiculata subsp. sesquipedalisis)

The demand for food of plant origin will continue to keep up with the world rapidly growing population. The potentially plant to generate high protein output is desirable to overcome the shortage of animal-based protein. This study was carried out to identify an alternatives plant-based protein. The winged bean (Psophocarpus tetragonolobus) and long bean (Vigna unguiculata subsp. sesquipedalis) are said as a rich protein source plant and widely consumed in Malaysia. Therefore, these two species, were used as a subject study. The objectives of this research are to isolate protein from winged bean (Psophocarpus tetragonolobus) and long bean (Vigna unguiculata subsp. sesquipedalis) and also to compare protein extraction from long bean and winged bean. Albumin was used as indicator to compare present of protein between long bean and winged bean. Protein was extracted by using alkaline method. Technically there are six major steps involved which are sample pre-treatment, extraction, centrifugation, Biuret test, spectrophotometer, and precipitation of protein. Samples were treated in 25°C and 35°C with three different volume-weight ratios (35:1. 40:1 and 45:1). The result obtained from this study showed that the protein not successfully extracted using alkaline method and proven by Biuret test and precipitation of protein, even though spectrophotometric analysis showed certain number of absorption reading but too low. Albumin give the positive result for protein compared to distilled water (control) and the sample used.