HALF-CIRCULAR DIPOLES FOR NON-DESTRUCTIVE TESTING

This thesis is presented in partial fulfilment for the award of the Bachelor of Engineering Electronic (Communication) with honours

UNIVERSITI TEKNOLOGI MARA (UITM) "

RIANA HAZLIN BT ABDULLAH FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA, 40450 SHAH LAM, SELANGOR, MALAYSIA

18 JULY 2014

i

ACKNOWLEDGEMENT

All praise is to Allah S.W.T, The Most Beneficent and The Most Merciful, Who has given me the strength, diligent and ability to complete this work.

My first thanks is to my supervisor, Dr. Mohd Khairul Mohd Salleh for his guidance, constant support, and patient throughout the development of project.

I would also like to express my appreciation to my family, laboratory technicians and friends for sharing the similar research interest and helping me to complete this project.

Lastly, I would like to thanks for all those who have helped directly or indirectly to make this thesis possible.

ABSTRACT

A design of two planar half-circular dipoles combination is presented to study the feasibility in transferring signal wirelessly across a small circular area. Two identical sets of half-circular dipoles, placed in front of each other, are used for transmitting and receiving. The operation frequency is chosen to be centred around 0.8 GHz, to ensure small dimensions of the overall circuit. The proposed configuration is designed and simulated using Computer Simulation Technology (CST), and realized using microstrip technology on FR4 substrate of 4.3 dielectric constant, and of 1.6 mm thickness. From the simulated and measured insertion and return loss, it is shown that the power transmission using the proposed configuration can be achieved around the targeted frequency of 0.8 GHz, where the S11 is smaller than -10 dB. The influence of the dimensions of the half-circular dipoles is investigated using simulation software. The obtained numerical results agree well with the experiment data.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	TITI	LE	
	APP	I II IV V VI VIII X XI	
	DEC		
	DED		
	ACKNOWLEDGEMENT		
	ABS		
	ТАВ		
	LIST		
	LIST OF TABLE LIST OF SYMBOLS AND ABBREVIATIONS		
			1.0
1.1	BACKGROUND STUDY	v 1	
1.2	OBJECTIVE	3	
1.3	SCOPE OF WORK	. 3	
1.4	PROJECT METHODOLOGY	4	
1,5	THESIS OUTLINE	5	
2.0		LITERATURE REVIEW	6
	2.1	INTRODUCTION	6
		2.1.1 Microstrip Antenna	6
		2.1.2 Dipole Antenna	8
		2.1.3 Non-Destructive Testing (NDT)	<u>9</u> =

2.2	ANTENNA PROPERTIES		
	2.2.1 Input Impedance	10	
	2.2.2. S-parameter (Return Loss & Gain)	10	
2.3	NON-DESTRUCTIVE TESTING PROPERTIES	12	
	2.3.1 NDT Methods	12	
2.4	FEED TECHNIQUES	13	
	2.4.1 Microstrip Feed Line	13	
	METHODOLOGY	14	
3.1	INTRODUCTION	14	
3.2	DESIGN SPECIFICATION		
3.3	WORK PROCESS		
3.4	HALF-CIRCULAR DIPOLES		
3.5	TOPOLOGY		
3.6	FEED LINE		
3.7	HALF-CIRCULAR DIPOLES DESIGNED		
	STEP BY USING CST SOFTWARE		
	3.7.1 Substrate	20	
	3.7.2 Ground	22	
	3.7.3 Circular dipoles & Half-circular dipoles	24	
	3.7.4 Feed Line	25	
3.8	SIMULATION PROCESS	26	
	3.8.1 Waveguide Port	26	
	3.8.2 Frequency Range	26	
	3.8.3 Farfield Monitor	27	
3.9	FABRICATED ANTENNA		
3.10	MEASUREMENT OF THE PROTOTYPE	29	
	3.10.1 Vector Network Analyzer (VNA)		

3.0