FREE SPACE MEASUREMENT OF COMPLEX PERMITTIVITY AND COMPLEX PERMEABILITY OF FERRITES MATERIALS USING TRANSMISSION REFLECTION METHOD AT MICROWAVE FREQUENCIES

Thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honours) (Communication) UNIVERSITI TEKNOLOGI MARA

HASBULLAH BIN HASSAN Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

In the name of Allah, the Beneficent and Merciful. It is with the deepest sense of gratitude to Allah who has given the strength and ability to complete this project and the thesis as it is today.

With this opportunity, I would like to express my gratitude to my project supervisor, Dr Deepak Kumar Ghodgaonkar for his continued guidance and invaluable advice, which has helped me tremendously in completing this project.

I also like give my sincere thanks to my family who have sacrificed so much of all that was theirs to give me a good education and for their never ending prayers. I would like to thank them for being supportive and understanding.

Last but not least, a thousand of thanks to all my friends who gave me all the moral support and encouragement in completing this project.

Hasbullah Bin Hassan Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 Shah Alam.

ABSTRACT

Measurement of complex permittivity (ϵ^*) and complex permeability (μ^*) at frequency range 7.5 to 12.5 GHz using transmission reflection method are presented for ferrites material. In this method, the complex permittivity and complex permeability will be calculated from the measured value of reflection coefficient (S_{11}) and transmission coefficient (S_{21}).

The key components of measurement systems are a pair of spot-focusing horn lens antennas, vector network analyzer and the computer. Because of the far field focusing ability of horn lens antennas, the free space measurement can be made at microwave frequency in a relatively compact and simple measurement set up. The free space line reflects line (LRL) calibration technique is using to eliminate the errors due to multiple reflections between antennas via the surface of the sample. For ferrite that is have high complex permittivity, the sample need to be sandwiched between two quarter wavelength (at mid-band) teflon plates, to eliminate the effect of non-matching problem.

LIST OF CHAPTERS

CHAPTER

PAGE

1.	INTRODUCTION	
	1.1 Microwave Nondestructive Testing (MNDT)	1-3
	1.2 Scope of the Thesis	4
	1.3 Complex Permittivity	3 .
	1.3.1 Dielectric Constant	5
	1.3.2 Polarization of Dielectric	5-6
	1.3.3 Loss Factor	7
	1.3.4 Loss Tangent	7
	1.4 Complex Permeability	8-9
2.	ELECTROMAGNETICS AND MICROWAVES	
	2.1 Electric and Magnetic Fields	10-12
	2.2 Electromagnetic waves	12-14
	2.3 Microwave	
	2.3.1 What are Microwave	14
	2.3.2 Characteristic Feature of Microwave	14-15
	2.3.3 Application of Microwave	16-18
3.	FERRITES MATERIALS	
	3.1 Ferrite Material	19
	3.2 Preparation of Ferrite	19-22
	3.3 Electrical Property of Ferrite	22
	3.4 Permeability of Ferrite	22-23
	3.5 Microwave Ferrite	23-26

THEORY 4.

4.1 Calculation for Complex Permittivity and Complex Permeability	27-30
4.2 Calculation of S-Parameter of the sample from measured	31-33
S-Parameter of the Teflon Plate – Sample – Teflon Plate Assembly.	

5. EQUIPMENT

8.

5.1 Vector Network Analyzer	
5.1.1 Network Analyzer Measurement	37-39
5.2 Antenna	
5.2.1 Requirement	40-43
5.3 Spot Focusing Horn Lens Antenna	
5.3.1 Lenses	44-45

6. SET UP MEASUREMENT

	6.1 Experimental work	
	6.1.1 Objective	46
	6.1.2 Measurement Systems	46-47
	6.2 Free Space Measurements of S-Parameter	48
	6.2.1 Error of Measurement Using Free Space Technique	49
	6.3 Transmission Reflection Method Measurement	50-51
	6.3.1 Quarter wavelength Line	51-52
	6.3.2 Quarter wavelength inside the Teflon.	52-53
7.	RESULTS	
	7.1 Experiment Results	54-56
8.	DISCUSSION AND CONCLUSION	

8.1 Discussion	٤	57-58
8.2 Conclusion		59