

SIMULATION OF LASER AND HYBRID LASER WELDING USING SYSWELD

ROBERT NGENDANG AK LIDAM (2006134937)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) Mechanical

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > NOVEMBER 2009

ACKNOWLEDGEMENT

Firstly, I would like to express my gratitude to God Almighty for sustaining me and providing me strength to carry out and complete this project successfully.

My final year project has been successful and pleasurable thank to the help of numerous persons that kindly give endless support and cooperation. It gives me a great pleasure to acknowledge the role of all the persons that contribute in this project.

I would like to thank and give an appreciation to my final year project supervisor, Dr -Ing Yupiter Harangan Prasada Manurung, for his never ending support, his continuous encouragement, his recommendations, suggestions and advices while monitoring and assisting during the completion of this project.

I would also like to appreciate the guideline and instruction of my co-supervisor, En. Mohd Ridhwan bin Mohammad Redza and representative from ESI group, Mr. Chan for giving me the benefit of their knowledge, views and experience.

Finally I would like to thanks to my family, all my friends and technicians of computer laboratories of Faculty of Mechanical Engineering for all their support and encouragement.

ABSTRACT

A 3D finite element analysis has been developed and conducted using finite element code SYSWELD to simulate the laser welding process of concealed T-joint welding and hybrid laser welding process of one-sided T-joint. Material used in the research is mild steel plates (S355). The simulation was done to determine the optimum welding parameter and later to predict the distortion of T-joint plates using laser welding process. In order to determine the optimum welding speed as independent input variables while weld profile (bead width and depth of penetration) are dependent variables. SYSWELD, through heat source modeling, was capable to generate the weld profile of laser welding. Transient simulation was performed for three case studies on various clamping conditions to predict the distortion by using the optimized parameter of laser welding. Selected simulation result was verified by comparing the welding profile from the simulation with the weld profile from analytical method of previous studies and found out to be in satisfactory agreement.

TABLE OF CONTENTS

CONTENTSPAGE

PAGE TITLE	1
ACKNOLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii

CHAPTER I INTRODUCTION

	1.1	Background of the study	1	
	1.2	Problem Statement	3	
	1.3	Objective of the Study	4	
	1.4	Scope of the Study	4	
	1.5	Significant of the Study	6	
CHAPTER II	LIT	8		
CHAPTER III	RE	SEARCH METHODOLOGY	1	7
	3.1	Introduction	1	7

	3.2	Study on Principal and Fundamental Theory	17
		3.2.1 Information Gathering	18
		3.2.2 Training	18
	3.3	Pre-processing	18
		3.3.1 Geometry Modeling	16
		3.3.2 Heat source Modeling	19
	3.4	Simulation Process	19
	3.5	Post-processing	19
	3.6	Discussion and Comparison	19
CHAPTER IV	BAS	SIC THEORY OF LASER AND HYBRID	
	LAS	SER WELDING, HEAT MODEL AND	
	DIST	FORTION ANALYSIS	21
	4. 1	Laser Welding Principles	20
	4.2	Hybrid Laser Welding	24
	4.3	Heat Model	25
		4.3.1 Heat Input	25
		4.3.2 Heat conduction and boundary condition	27
	4.4	Distortion	28
		4.4.1 Longitudinal Shrinkage	28
		4.4.2 Transverse Shrinkage	30
		4.4.3 Angular Distortion	32
CHAPTERV	CAS	SE STUDIES OF LASER WELDING ON	
	CON	NCEALED T-JOINT AND HYBRID LASER	
	WE	LDING ON BUTT JOINT	33
	5.1	Case Study on Laser Welding on Concealed T-	
		joint Using Customized Meshing Strategy	33
		5.1.1 Welding Parameter and Weld Profile	33