SYNTHESIS OF PALLADIUM DOPED TIN OXIDE VIA HYDROTHERMAL METHOD AND THEIR PHOTOCATALYTIC PERFORMANCE ON MICROPLASTIC REMOVAL

NURIZYAN AMIRAH BINTI MOHD ZAIDI

BACHELOR OF CHEMICAL ENGINEERING (ENVIRONMENT) WITH HONOURS

UNIVERSITI TEKNOLOGI MARA

2022

SYNTHESIS OF PALLADIUM DOPED TIN OXIDE VIA HYDROTHERMAL METHOD AND THEIR PHOTOCATALYTIC PERFORMANCE ON MICROPLASTIC REMOVAL

By

NURIZYAN AMIRAH BINTI MOHD ZAIDI

This report is submitted in partial fulfillment of the requirements needed for the award of Bachelor of Chemical Engineering (Environment) with Honours

CENTRE FOR CHEMICAL ENGINEERING STUDIES UNIVERSITI TEKNOLOGI MARA

AUG 2022

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to finish my FYP and for completing this challenging journey successfully. My appreciation and thank you to my supervisor Dr Vicinisvarri Inderan for all the support and guidance through all stages during my research and writing journey.

Special thanks to my classmates and friends for helping me with this project and always sharing brilliant suggestion and improved comment to finish this study.

Finally, this thesis is dedicated to my parents for the love and support in whatever I pursue.

TABLE OF CONTENTS

PAGE

AUTHOR'S DECLARATION SUPERVISOR'S CERTIFICATION COORDINATOR'S CERTIFICATION ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS		i ii iv v vii vii ix			
			ABSTRACT		X
			CHAPTER ONE INTRODUCTION		11
			1.1	Introduction	11
			1.2	Problem Statement	13
			1.3	Objectives	14
			1.4	Scope of Work	15
CHA	APTER TWO LITERATURE REVIEW	16			
2.1	Microplastic Pollution into Ocean	16			
2.2	Current treatment technology in microplastic removal	18			
2.3	SnO ₂ as Metal Oxide Photocatalyst for Photodegradation	19			
2.4	The Mechanism Photocatalytic Degradation of Microplastics	20			
2.5	Synthesis of SnO ₂ nanocomposite	22			
CHA	APTER THREE RESEARCH METHODOLOGY	24			
3.1	Materials	24			
3.2	Synthesis of SnO_2 nanorods	24			
3.3	Preparation of Polypropylene Microplastics sample	24			
5.5	repaired of rolphoppiene interophistics sumple	20			

ABSTRACT

Microplastics pollution has become a global issue with an estimated of 8 million tonnes of plastic garbage have been found in the ocean each year. An enormous number of researches has been carried out by scientists to overcome this issue. Among them, photodegradation is considered as an efficient method to prevent the MPs escape from the wastewater treatment plant into ocean. In this study, SnO₂ with precious metal dopant, Palladium (Pd) is tested as photocatalyst to degrade the polypropylene (PP). Pd was selected due to their high oxidation catalytic characteristics. The Pd doped SnO₂ nanorods are synthesized using a facile hydrothermal route at 180 °C for 24 hours. The photocatalytic reaction was executed at different durations (24, 48 and 72 hours) and pH condition, (pH 5, pH 7 and pH 9) under visible light (18W). The as-synthesized photocatalyst undoped SnO₂ and 10% Pd doped SnO₂ nanorods were analysed using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) spectrometer and UV-Vis spectrometer. The broadening of XRD peaks in 10% Pd: SnO₂ was signifying a decrease in crystalline size and reduction in crystallinity. SEM images show the nanorods size is decreased when Pd dopant was added into the SnO₂ sample. The performance of the photodegradation of the PP was verified by using FTIR analysis. The presence of strong vibration peaks of the carbonyl band and the hydroxyl band formed confirmed the polymer chain breakdown via photo-oxidation reaction. Optimum time duration and pH condition has shown as important parameters in the degradation of microplastics. Cracks and cavities have been found on the surface of PP which treated with undoped SnO₂ photocatalyst. From the discussion, 10% Pd: SnO₂ has showed its high performance after 72 hours of photocatalytic reaction at pH 9 and it has potential as photocatalyst for degradation of microplastics.