ECONOMIC LOAD DISPATCH FOR PLANTS HAVING DISCONTINUOUS FUEL COST FUNCTIONS

Thesis is represented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA

AZIDA BINTI AZIZ FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most beneficial, most merciful and the almighty one, it is with deepest serve gratitude of the Al-Mighty that gives strength and ability to complete this project.

I would like to take this opportunity to express my greatest thankful to my project supervisor, Associate Professor Bibi Norasiqin bin Sheikh Rahimullah for her guidance, advices, supervision, encouragement, faith to me in helping me in accomplishing and understand the concept of this project.

Finally, I would love to say thanks to my beloved family for their support and unending prayers and also to my beloved friends, Anis Nurhidayati, Siti Farizah, Nasrul Ridhwan and others for their understanding directly or indirectly in successful completion of my project.

May Allah repay all your kindness...

ABSTRACT

Economic Dispatch(ED) Solution gives the optimal combination of power output of all generating units in order to minimize total fuel cost while satisfying the load demand and operational constraints. In recent years, the study of economic load dispatch problems also include the solution for combined cycle cogeneration plant(CCCP). From this study, an efficient algorithm is used to solve the economic dispatch for CCCP. The proposed method is tested on a system of two thermal units and one CCCP unit and the results show that the generation cost of the system can be minimized.

Index term – Economic dispatch (ED), Quadratic programming (QP), Optimal power flow (OPF), Combine cycle cogeneration plant (CCCP), Combined heat and power (CHP), Simple cycle cogeneration plant (SCPP), Micro genetic algorithm (MGA), Genetic algorithm (GA), Power (P) and Voltage (V).

TABLE OF CONTENTS

<u>CONTEN</u>	TS	PAGE
DECLAR	i	
DEDICAT	ii	
ACKOWI	iii	
ABSTRAG	iv	
TABLE O	v	
LIST OF	viii	
LIST OF	ix	
ABBREV	Х	
CHAPTE	R 1	
IN	FRODUCTION	
1.0	Introduction	1
1.1	Research Objective	6
1.2	Scope of work	6
1.3	Summary of thesis	6
CHAPTE	R 2	
LI	FERATURE REVIEW	
2.0	Introduction	8
2.1	Definition of Economic Dispatch	9
2.2	Function of Economic Dispatch	10
	2.2.1 Planning for tomorrow's dispatch	10
	2.2.2 Dispatching for power system today	11
2.3	Importance of Economic Dispatch	. 11
2.4	Constraints Affecting Economic Dispatch	11
	2.4.1 Base Load Power Plants	12
	2.4.2 Peak Load Power Plants	12
	2.4.3 Load Curve	12
2.5	Economic Dispatch including Losses	13

۷

TABLE OF CONTENTS

CONTENT	CONTENTS						
	251	D as off	inianta Matrix	14			
• •	2.3.1	D-coeffi		14			
2.6	Operating Cost of a Thermal Plant			15			
	2.6.1	Lagrang	e multiplier method	17			
2.7	Area I						
	Minin	18					
	2.7.1	Geograp	phic region	18			
	2.7.2	Generat	ion reserves	18			
	2.7.3	Transmi	ission conveniences	18			
2.8	Factor	r affecting	affecting Costs				
2.9	Fuel C	19					
	2.9.1	19					
	2.9.2 Combined Cycle co-generation Plants			19			
		2.9.2.1	Steam Turbine	21			
		2.9.2.2	Gas Turbine	21			
	2.9.3	Factors	Influencing Cogeneration Choice	21			
		2.9.3.1	Base thermal load matching	22			
		2.9.3.2	Thermal load matching	22			
2.10	2.10 Quadratic Programming						

CHAPTER 3

ME	ГНОD	OLOGY			
3.0	Introduction				
3.1	Problem Statement				
3.2	Quadratic Programming with Optimization Toolbox				
3.3	Optim	26			
	3.3.1	fmincon in Optimization Toolbox	27		
	3.3.2	Lagrange Multiplier	29		
	3.3.3	Hessian Matrix	31		