ECONOMIC DISPATCH OF POWER SYSTEM INCORPORATING WIND POWER PLANT

A thesis is presented in partial fulfillment for an award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA

NATASHA BINTI MUKHTAR FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UiTM) SHAH ALAM JANUARY 2015

ACKNOWLEDGEMENT

First of all, thanks to Allah because with His blessing giving me an opportunity to complete this project which titled **"Economic Dispatch of Power System Incorporating Wind Power Plant".** Without His blessing, I may not be able to complete this final year project successfully.

Furthermore, I would like to express my deepest thanks and appreciation to my project supervisor, Associate Professor Bibi Norasiqin Binti Sheikh Rahimullah for her kindness, encouragement, teaching, and support in completing this project. Her valuable advices and constant guidance in sharing her knowledge made me understand clearly about this project and finally, with her valuable help I am able to complete this project.

Moreover, special thanks to all my friends for their help, cooperation and moral in completing this final year project. Without their brilliant ideas and full support from the starting until I finished this project, I am surely will not be able to complete my project successfully.

Last but not least, my deepest thank goes to my dearest husband, Mr. Muhamad Nasrun B. Muhamad@Razali for his supports and encouragement for me to finish this project. His prayer and endless love make me more confident to complete this thesis. To my beloved parents, Mr. Mukhtar B. Awang and Mrs. Ruhaya Bt. Abdul Rahman and also my siblings, thank you for your unlimited support and care that keep me struggling for the best in completing my degree of Bachelor of Electrical Engineering (Honors).

ABSTRACT

This thesis presents the solution for Economic Dispatch (ED) problem when wind power plant is incorporated in the system. Particle Swarm Optimization (PSO) method has been implemented to solve the ED problem in order to minimize the total production cost considering wind power plant and valve-point effect of generation units. For numerical simulation, six units system incorporating one wind power generation is used. The simulation results show the effect of wind power plant in reducing total fuel cost.

TABLE OF CONTENTS

CON	ITENTS	PAGE	
DECLARATION			
ACKNOWLEDGEMENT			
ABSTRACT			
TABLE OF CONTENTS			
LIST OF FIGURES			
LIST OF TABLES			
CHA	PTER 1: INTRODUCTION		
1.1	BACKGROUND OF STUDY	1-2	
1.2	PROBLEM STATEMENT	2-3	
1.3	SCOPE OF PROJECT	3	
1.4	OBJECTIVE	4	
1.5	THESIS ORGANIZATION	4	

CHAPTER 2: LITERATURE REVIEW

2.1	INTRODUCTION		
2.2	BASIC THEORY OF ECONOMIC DISPATCH		
	2.2.1	ED PROBLEM WITH LINEAR COST FUNCTION	7
		WITH VALVE-POINT EFFECTS	8-9
2.3	ECON	OMIC DISPATCH CONSTRAINTS	9
	2.3.1	INEQUALITY CONSTRAINT	10
	2.3.2	POWER BALANCE CONSTRAINT	10
	2.3.3	TOTAL POWER LOSSES, PL	11
2.4	ED PR	OBLEM OF POWER SYSTEM INCORPORATING	
	WIND	POWER PLANT	12
2.5	SOLV	ING METHODS IN ECONOMIC DISPATCH PROBLEM	13-14
2.6	WIND	POWER PLANT	15
	2.6.1	ADVANTAGES OF WIND POWER PLANT	15-16
	2.6.2	DISADVANTAGES OF WIND POWER PLANT	16
2.7	SOLV	ING METHODS IN ECONOMIC DISPATCH OF	
	POWE	R SYSTEM INCORPORATING WIND POWER PLANT	17-18
2.8	PARTI	ICLE SWARM OPTIMIZATION (PSO) TECHNIQUE	18-19
CHA	PTER 3:	METHODOLOGY	
3.1	INTRO	DUCTION	20
3.2	PARTI	ICLE SWARM OPTIMIZATION (PSO) METHOD	20-22

5.2	PART	ICLE SWARM OPTIMIZATION (PSO) METHOD	20-22
	3.2.1	PARAMETERS OF PSO METHOD	22