

UNIVERSITI TEKNOLOGI MARA

EVOLUTIONARY ALGORITHM OPTIMIZATION FOR DYNAMIC ECONOMIC DISPATCH CONSIDERING UNCERTAINTIES

KHAIRUL FAIZEE BIN KORSIN

Thesis submitted in fulfilment of the requirements for the degree of Bachelor of Engineering (Hons) Electrical Engineering

Faculty of Electrical Engineering

July 2017

ACKNOWLEDGEMENT

Alhamdulillah, praises to Allah S.W.T for His blessing and granting me strength to successfully complete this thesis.

First of all, I would like to express my deep regards and gratitude to my supervisor, Assoc. Prof. Bibi Norasiqin Sheikh Rahimullah for her guidance, encouragements, ideas and supports in completing this study. Her blessing, help and guidance shall carry me a long way in the journey of life on which I am about to embark.

My sincerest gratitude to my beloved family and friends for their moral support throughout the completion of this study. Not to forget, to all my friends or who have been helping me a lot during the research period.

Lastly, thank you to all who have been involved either directly or indirectly in helping me to complete my final year project.

ABSTRACT

In this study, it is proposed to solve the dynamic economic dispatch problem using evolutionary programming (EP) by considering uncertainties under the deregulated energy and reserve market. The goal of the proposed method is to maximize the generation company's own profit and to hedge its risks as a participant in the energy market. In the past, utilities had to produce power to satisfy their customers with the objective to only operate with a minimum total production cost. But in the new structure system, the generation company can schedule their generators with objective of maximizing their own company's profit. The uncertainties that will be considered are demand and reserve required in each market, energy and reserve price in each market, and the probability that reserves are called upon the actual operation time. By using this method, the optimal amount of power and reserve can be determined. The reserve payment method that is used in this study is the payment for power delivered. Simulations has been performed on a 10-unit generator test system to show the effectiveness of the proposed method.

TABLE OF CONTENTS

APPROV	/AL	ii
	RATION	
ACKNO'	WLEDGEMENT	iv
ABSTRA	ACT	v
TABLE (OF CONTENTS	vi
LIST OF	FIGURES	viii
LIST OF	TABLES	ix
LIST OF	SYMBOLS AND ABBREVIATIONS	x
CHAPTE	ER 1	1
INTRO	ODUCTION	1
1.1	OVERVIEW OF STUDY	1
1.2	PROBLEM STATEMENTS	2
1.3	OBJECTIVES	2
1.4	SIGNIFICANCE OF STUDY	3
1.5	SCOPE OF STUDY	3
1.6	THESIS ORGANIZATION	3
CHAPTE	ER 2	5
LITER	RATURE REVIEW	5
2.1	LITERATURE REVIEW	5
2.2	CONVENTIONAL DYNAMIC ECONOMIC DISPATCH	7
2.3	DYNAMIC ECONOMIC DISPATCH UNDER DEREGULATED ELE	
POV	VER SYSTEM	11
24	RESERVE PAYMENT METHOD	13

2.5	TEHCNIQUE	TO	SOLVE	DYNAMIC	ECONOMIC	DISPATCH			
CO	NSIDERING UNC	ERTA	INTIES			15			
2.5.	2.5.1 Artificial Bee Colony (ABC) optimization								
2.5.2	2.5.2 Particle Swarm Optimization (PSO)								
2.5.	2.5.3 Genetic Algorithm (GA)								
2.5.4	2.5.4 Harmony Search Algorithm								
СНАРТЕ	ER 3	• • • • • • • • • • • • • • • • • • • •	•••••			17			
METH	IODOLOGY	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		17			
3.1	PROPOSED OF	TIMIZ	ATION ME	ETHOD		17			
3.2	EVOLUTIONARY PROGRAMMING								
3.3	EVOLUTIONA	RY P	ROGRAMI	MING OPTIM	IZATION FOR	DYNAMIC			
ECC	DNOMIC DISPAT	CH CO	NSIDERIN	G UNCERTAI	NTIES	22			
3.4	MATLAB PRO	GRAM	MING			24			
СНАРТЕ	ER 4	•••••		•••••		25			
RESU	LTS AND DISCUS	SSION	•••••	•••••		25			
4.1	SIMULATION	RESUL	TS	•••••		25			
4.2	COMPARISON	OF PF	ROPOSED :	METHOD WIT	H USING CON	VENTIONAL			
MET	ГНОD	•••••	•••••	•••••		25			
4.3	SIMULATION	RESUL	TS FOR PI	ROPOSED MET	`HOD	30			
СНАРТЕ	ER 5	•••••	•••••			34			
CONC	LUSIONS					34			
СНАРТЕ	CR 6	•••••	••••••			35			
RECO	MMENDATION	•••••	••••••			35			
REFERR	FNCFS					36			