TO OBTAINED THE OPTIMUM PARAMETERS FOR WELDING OF COPPER AND CARBON STEEL USING FRICTION WELDING TECHNIQUE

RAYNER BENJAMIN (2007271094)

A thesis submitted in partial fulfillment of the requirement for the award Of Bachelor Engineering (Hons) Mechanical

Faculty of Mechanical Engineering

MARA University of Technology (UiTM)

ACKNOWLEDGEMENT

In the name of God the Most Gracious who has given me strength and ability to complete this project. All perfect praises belong to God Lord of Universe.

Firstly, I would like to thank my supervisor Prof. Sunhaji Kiyai Abas, to my cosupervisor Dr. Ing. Yupiter HP Manurung, and also to Mr. Ghalib Tham Hock Khan for their guidance and advice throughout the whole project. If without thenknowledge and advices this project might not have been successful.

Very special thanks to Mr. Shahidan, technition advance manufacturing lab and all technicians for their help, advices and assistance during using the equipment for the project.

Not to be missed, much gratitude to my family who has given me more than a hand needs directly or indirectly through my practical. Their support and patience really gave me the surplus of energy to finish this report.

Last but not least, thank you to all my friends for their encouragement throughout this semester. Thank you and appreciation to all mentioned above and any other parties, which involved directly or indirectly in preparation of this final year project. May God rewards and bless all of you and me myself, amen.

Thank to you all...

ABSTRACT

The aim of this study is to obtain the optimum bonding parameters that needed to join two dissimilar metals of copper and carbon steel by Friction Welding technique. The four parameters that were examined in this study were Heating Pressure, Heating Time, Forging Pressure and Forging Time. The project initially was to find which material was best on the fixed side and which material was best on the rotated side. This experiment done to find the optimum parameter based on one parameter at a time. First optimum parameter to be obtained is the Heating Time parameter, then Heating Pressure parameter, next is Forging Pressure parameter and finally Forging Time parameter. After the optimum values are known, the values were used for fine tuning test and again the value of Tensile Strength is obtained. The tests that carried out in this study are tensile test, bending test, visual inspection, macro test and radiographic inspection. From the study it is found that the optimum friction welding parameters to weld copper and carbon steel for diameter 10 mm are as follow: heating time is 2.5s; heating pressure is 60kg/cm²; forging time is $SSkg^*cvc^*$; and forging time is 5s.

Table of Contents

ACKNOW	LEDGEMENT			5
ABSTRAC	T			6
LIST OF F	IGURE			10
LIST OF T	ABLE			12
CHAPTER	1			13
1.1	Background	of	project	13
1.2	Problem statement			15
1.3	Objective	of	Project	15
1.4	Significance	of	Project	16
1.5	Scope	of	Study	16
CHAPTER	2			18
2.1	Welding Technique Introduction			18
2.1.1	Friction Weld	ling Technique		19
2.1.3	Machine			23
2.2	Material			25
2.2.1	Copper			25
2.2.2	Carbon Steel	p]		32
CHAPTER	3			37
3.1	Before welding			37
3.11	Specimen			37
3.1.2	2 Friction welding machine preparation			40
3.2	During Welding			42
3.3	After welding			42
3.3.1	Non-Destruct	ive test		42
3.3.2	Destructive to	est		43
3.4	Parameters			49

3.5 Obta	iin optimum parameters		
3.6 Safet	ty	51	
CHAPTER 4		52	
4.1 Arc spectrometry test.			
4.1.1 Carbon Steel			
4.1.2 Copper		54	
4.2 Heating Pres	ssure Parameter	55	
4.3 Heating Tim	ne Parameter	57	
4.4 Forging Pres	ssure Parameter	59	
4.5 Forging Tim	ne Parameter	61	
4.6 Refinement	of Parameters	63	
4.6.1 Heating	Pressure and Heating Time.	63	
4.6.2 Optimur	m Parameters	.,,65	
CHAPTER 5		66	
5.7 Mate	erial	69	
CHAPTER 6		70	
6.1 Cond	clusion	70	
6.2 Reco	ommendation	71	
CHAPTER 7		72	
7.1 BOO	OKS	72	
7.2 JOU	RNAL	73	
CHAPTER 8		74	
Appendices 8.1	: Heating Pressure Tensile Strength Result	74	
Appendices 8.2	: Heating Time Tensile Strength Result	75	
Appendices 8.3	: Forgirig Pressure Tensile Strerigth Result	76	
Appendices 8.4	77		
Appendices 8.5	: Heating Pressure Bending Test Result	78	