

UNIVERSITI TEKNOLOGI MARA

AN IMPROVED PARTICLE SWARM OPTIMIZATION TO SOLVE NON-SMOOTH ECONOMIC DISPATCH PROBLEMS IN POWER SYSTEM

ZULFADLI BIN JALADUDIN

Thesis submitted in fulfilment of the requirements for the degree of Bachelor Of Engineering (Hons) Electrical Engineering

Faculty Of Electrical Engineering

January 2017

ACKNOWLEDGEMENT

Praise to Allah S.W.T The Most Merciful, Who has given me the spirit, strength and ability to complete this Final Year Project titled An Improved Particle Swarm Optimization to Solve Non-Smooth Economic Dispatch Problems in Power System

The author would like to thank the supervisor of this research, Assoc. Prof. Bibi Norasiqin Sheikh Rahimullah for her helpful comments and suggestions in completing this study.

Besides, I would like to thank my family and friends, especially my course mate, Ida Syahirah Binti Baderol Iskandar, who supported and helped me a lot to finish the development of the programming.

ABSTRACT

This study presents the solution to non-smooth Economic Dispatch (ED) problem in power system considering the valve-point loading by using an improved technique of Particle Swarm Optimization (PSO). This method has been improvised by using Gaussian Mutation (GM) operator in order to improve the capability of basic PSO. The proposed technique was used on case study consisting of 3 and 13 generation units. The results obtained by the proposed method were compared with basic PSO.

TABLE OF CONTENTS

Approval	i
Declaration	ii
Acknowledgement	iii
Abstract	iv
List of Figures	vii
List of Tables	viii
List of Symbols and Abbreviations	ix
Chapter 1 Introduction	1
1.1 Overview of Study	1
1.1.1 Economic Dispatch	1
1.1.2 Non-Smooth Economic Dispatch	2
1.2 Problem Statement	4
1.3 Significant of Project	4
1.4 Objectives	4
1.5 Scope of Project	5
1.6 Thesis Organization	5
Chapter 2 Literature Review	7
2.1 Dynamic Programming	7
2.2 Optimization Techniques	9
2.3 Particle Swarm Optimization	11
Chapter 3 Methodology	12
3.1 Introduction	12
3.2 Workflow of Project	13
3.3 Problem Formulation	14
3.4 Particle Swam Optimization	16

3.5 Implementation of PSO in ED Problem	17
3.6 Gaussian Mutation	20
3.7 Implementation of PSO-GM in ED Problem	21
3.8 Flowchart of Program	21
3.9 Experimental Setup	24
3.10 Software	26
Chapter 4 Results and Discussions	28
Chapter 5 Conclusions and Recommendation for Future Work	34
5.1 Conclusion	34
5.2 Recommendation for Future Work	35
References	36