A COMPARATIVE OF HARMONIC ANALYSIS WITH AND WITHOUT ACTIVE POWER FILTER TECHNIQUES IN THREE-PHASE UTILITY INTERFACE OF POWER ELECTRONIC LOADS

Project report is presented in particial fulfillment for award of Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA

TENGKU MOHD AZHAR BIN TENGKU AHMAD

Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

In the name of Allah Most Beneficent Most Merciful. Almost. All praises being to Allah, Lord of the Universe, with also bless and regard to Nabi Muhammad S.A.W, His Companion and the people who follow His path.

I gratefully acknowledge the co-operation of Pn Bibi Norasiqin Binti Sheikh Rahimullah who has assisted the various tests, references, guidance, encouragement and support in completing this project. All the regular discussion sessions that we had throughout the period of study have contributed to the completion of this project.

I also gratefully acknowledge the co-operation and discussion with my friends in assisting with new idea in developing my project.

I also would like to thank my family especially my mother and father for their moral and material support.

ABSTRACT

Harmonics generation can lead to serious power quality problem if it is not reduced to acceptable level. Electric components content of non-linear loads contribute to serious harmonic injection to the main supply line. This project is proposed to design a simple three-phase industrial networks (power electronic load) for the purposes of studying the harmonic of supply network due to the use of various non-linear load (power electronic load). The results of this study also include the harmonic analysis without filter and the harmonic analysis with filter. Active power filter (APF) proposed is based on three-phase inverter connected in parallel at the AC terminal loads or in point of common coupling (PCC). Current distribution characteristic at the point of common coupling (PCC) is investigated and measurements are taken with various types of load is connected. The results from the basic model without filter are then compared with similar model implemented using Pspice developed to ascertain its accuracy. This work illustrates the use of the power system blockset (PSB), within the MATLAB/simulink V6.1 software. The total harmonic distortion (THD) measurement collected from the harmonic data analysis.

TABLE OF CONTENTS

PAGE

DECLARATION	ì
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii

CHAPTER DESCRIPTION

1.1	Power Quality	1
1.2	Power Electronic Simulation Concept	2
1.3	Power System Blockset	2
1.4	Model of The Network	3
1.5	Scope of The Thesis	4

2

LITERATURE REVIEW

2.1	Introduc	tion	6
2.2	Type of I	load	6
	2.2.1	Linear load	6
	2.2.2	Non-linear load	7
2.3	Electron	ic Switching Power Converters	7
2.4	Three-ph	ase uncontrolled rectifier	8
2.5	Three-pl	ase controlled rectifier	10
2.6	Three-ph	ase Bridge Inverter	12

CHAPTER DESCRIPTION

39

3 THE PROPOSED CIRCUIT DESIGN APF

3.1	Introduction	16
3.2	The Proposed APF circuit	16
3.3	Detection Method	18
3.4	Time Domain Approach	18
3.5	Control Strategy	18
	3.5.1 Control Algorithm of Active Shunt Filter	18
	3.5.2 Control Strategy for Active Power Filter	19
	3.5.3 Sinusoidal Reference-Feedback Voltage	
	Control	19
3.6	Sinusoidal Pulse width modulation	20

4 HARMONICS

4.1	Introduction	24
4.2	Harmonics in Power Systems	24
4.3	Harmonics fundamental	26
4.4	Harmonics distortion	28
4.5	Harmonic sequence	30
4.6	Source of Harmonics	32
4.7	Effect of Harmonic in Electrical System	32
4.8	Total Harmonic Distortion	34
4.9	Harmonic Current	35
4.10	Harmonic Current Distortion Limits	37

5 COMPUTER SIMULATION MODEL

5.1 Intro	oduction