ANALYSIS OF BRUSHLESS DC MOTOR IN PROTOTYPE HYDROGEN FUEL CELL ELECTRIC VEHICLE (FCEV) FOR HIGH EFFICIENCY PERFORMANCE AT DIFFERENT DRIVING TECHNIQUE

This thesis is presented in partial fulfillment of the requirement for the award of the Bachelor of Engineering (Hons) Electrical

NORHISYAM MAKMUR BIN ISMAIL FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA JULY 2015

ACKNOWLEDGEMENT

Alhamdulillah, I would like to express my gratitude to Allah S.W.T, because with His blessing I am able to complete this final year project successfully. The title of my research project is Analysis of Brushless DC Motor in prototype Hydrogen Fuel Cell Electric Vehicle (FCEV) for high efficiency performance at different driving technique.

Firstly, I would like to convey my high appreciation to my supportive and understanding project supervisor, Bibi Norasiqin Sheikh Rahimullah (Assoc. Prof.) for her kindness, support, guidance, and suggestions during the progression of this project. I also want to thanks the cooperation of UiTM Eco Sprint team members who have been working together for the construction of a prototype fuel cell electric vehicle.

Special thanks and appreciation also goes to my parents, Ismail Omar and Mahani Sahudin for unlimited support and care. Last but not least, thanks to every single person who has participated directly or indirectly in contribution towards the progress of this thesis including my family, friends and lecturers who helped me a lot to ensure the completion of the project on time.

ABSTRACT

One of the requirements for the prototype hydrogen fuel cell electric vehicle competing in 2015 Shell Eco Marathon Asia is that it must travel furthest using least amount of energy. This paper reports the simulation and experimental analysis performed on brushless dc motor used in the vehicle for high efficiency performance at different driving techniques. Results obtained from the test show that by operating at certain speed, high efficiency performance of the motor can be achieved. Hence, its enable the vehicle is able to travel furthest using least amount of energy.

TABLE OF CONTENTS

APPROVA	AL	ì
AUTHOR	DECLARATION	ii
ACKNOW	LEDGEMENTi	ii
ABSTRAC	CTi	iv
TABLE O	F CONTENTS	v
LIST OF	FIGURES v	ii
LIST OF	FABLESi	ix
LIST OF S	SYMBOLS AND ABBREVIATIONS	.x
CHAPTE	R 1	.1
INTRODU	JCTION	.1
1.1. B	ACKGROUND OF STUDY	. 1
1.2. P	ROBLEM STATEMENT	.3
1.3. S	IGNIFICANT OF STUDY	.3
1.4. O	BJECTIVES	.4
1.5. S	COPE OF WORK	.4
1.6. T	HESIS ORGANIZATION	.4
CHAPTE	R 2	.7
LITERAT	URE REVIEW	.7
2.1. F	UEL CELL VEHICLE	7
2.1.1	OPERATING PRINCIPLES OF FUEL CELLS	7
2.1.2	HYDROGEN FUEL CELL SYSTEM CHARACTERISTIC	8
2.1.3	ADVANTAGES OF FUEL CELL VEHICLE 1	0
2.2. B	RUSHLESS DC MOTOR1	1
2.2.1 MOTO	COMPARISON BETWEEN BRUSHLESS AND BRUSHED DC DR12	
2.2.2	OPERATION OF BRUSHLESS DC MOTOR	3
2.3. SI	HELL ECO MARATHON ASIA1	5
2.3.1	INTRODUCTION1	5
2.3.2	HISTORY OF SHELL ECO MARATHON ASIA 1	6

2.3	.3	SHELL ECO-MARATHON RULES AND REGULATIO	NS 2015 16	
2.3	.4	TEAM UITM ECO-SPRINT GOALS		
2.4.	VEH	HICLE ACCELERATION MODELLING	20	
2.4	.1.	VEHICLE DYNAMIC PARAMETERS	20	
2.4	.2.	TRACK CHARACTERISTIC	21	
CHAPT	FER :	3	22	
METH	odo	LOGY	22	
3.1.	INT	RODUCTION	22	
3.2	ME	THODOLOGY PROCESS	22	
3.2	PO	WER REQUIREMENT	27	
3.3	DET	FERMINATION OF MOTOR EFFICIENCY		
3.4	DRI	VING TECHNIQUES STRATEGY		
3.4	.1	CONSTANT SPEED		
3.4	.2	AVERAGE SPEED	34	
3.5	TES	ST BENCH	34	
3.6	ELC	OGGER SYSTEM-INSTALLING AND USING THE WIN	NDOWS™	
SOFTWARE				
CHAPTER 4				
RESUL	LT AI	ND DISCUSSIONS		
4.1.	INT	RODUCTION		
4.2.	CAI	LCULATION RESULT		
4.3.	EXI	PERIMENTAL RESULT (DRIVING TECHNIQUES)	43	
4.3	.1	CONSTANT SPEED (30KM/H)	43	
4.3	.2	AVERAGE SPEED (24KM/H – 36KM/H)	44	
CHAPT	FER :	5	46	
CONC	LUSI	ON AND RECOMMENDATION	46	
5.1.	CO	NCLUSION	46	
5.2.	REC	COMMENDATIONS	47	
CHAPTER 6				
REFERENCES				