BIOGEOGRAPHY BASED OPTIMIZATION (BBO) FOR ECONOMIC LOAD DISPATCH (ELD) PROBLEM

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Honours) Electrical Universiti Teknologi MARA

AHMAD BIN SARI

Faculty of Electrical Engineering

UNIVERSITI TEKNOLOGI MARA

40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

"In the Name of Allah, Most Gracious, Most Merciful"

Alhamdulillah, all praise to Allah, Lord of the Worlds. Thank God for the mercy and grace, let me complete this Bachelor Of Engineering (Honours) Electrical report successfully. With the permission and prayer, all the problems in this project can be simplified to the end. Here, I want to thank my supervisor, Assoc. Prof. Bibi Norasiqin Sheikh Rahimullah for giving a lot of help, advice and encouragement to me in all matters related to this Final Year Project. Any guidance and advice is very meaningful in this thesis, hence all assistances are appreciated. To my mother, father, brother, sister, thank for your encouragement and support. To all my friends, thank you for having helped me directly and indirectly in the process of completing this thesis. Any moral support, criticism and assistance will be the most beautiful memory that I ever had. Finally, the good is from Allah, the evil that comes is from my mistake. Last but not least, let us work towards excellence in the world and akhirat. Insyaallah

ABSTRACT

This paper presents a Biogeography Based Optimization (BBO) for Economic Load Dispatch (ELD) problems. Using this method, the biological algorithm in optimization problem can be studied and the best minimum of total generation cost can be obtained. ELD is used to allocate the power generators to meet the total load demand at minimum operating cost while satisfying an equality and inequality constraints. This method seems to be a promising alternative approach for solving ELD problems in practical power system. The ELD based BBO are tested on six generators with limit and without losses. The power demand is set as 1263MW. The proposed BBO shows that BBO can be used to solve the economic dispatch problem.

TABLE OF CONTENTS

CON	ITENT	PAGE
ACK	NOWLEDGEMENT	i
ABSTRACT		ii
TABLE OF CONTENTS		iii
LIST	OF FIGURE	v
LIST OF TABLE		vi
LIST	OF SYMBOL AND ABBREVIATION	vii
2		
CHA	PTER 1.0: INTRODUCTION	1
1.1	INTRODUCTION	1
1.2	OBJECTIVES	3
1.3	SCOPE OF PROJECT	3
1.4	PROBLEM STATEMENT	3
1.5	THESIS ORGANIZATION	4
СНА	PTFD 2 0. I ITFD ATHDE DEVIEW	5
2.1		5
2.1		5
2.2	GENETIC ALGORITHM (GA)	5 14
ل و سک	2 31 OVERVIEW OF THE GENETIC ALGORITHM	15
24	PARTICLE SWARM OPTIMIZATION (PSO)	15
, , , , ,	2.4.1 OVERVIEW OF PSO	16
2.5	HOPFIELD NEURAL NETWORK	17
	2.5.1 OVERVIEW OF HOPFIELD NEURAL NETWORK	17
2.6	DIFFERENTIAL EVOLUTION (DE)	18
2.7	ARTIFICIAL IMMUNE SYSTEM (AIS)	19
2.8	BACTERIA FORAGING ALGORITHM (BFA)	19
	· ·	

2.9	BIOGEOGRAPHY BASED OPTIMIZATION	19
2.10	SUITABLE INDEX VARIABLE (SIV)	25
2.11	HABITAT SUITABLE INDEX (HSI)	25
2.12	CONSTRAINTS IN ECONOMIC DISPATCH	26
2.13	MATLAB	27
	2.13.1 RANDOM NUMBERS	28
	2.13.2 CONCATENATION	29
	2.13.3 MATRIX CREATION FUNCTION	30
	2.13.4 ROW, COLUMN INDEXING	31
	2.13.5 LOGICAL OPERATORS	32
	2.13.6 THE COMMAND HISTORY	33
	2.13.7 SHORTCUT	34
	2.13.8 MATRIX AND ARRAY OPERATION	35
CHA	PTER 3.0: METHODOLOGY	37
3.1	INTRODUCTION	37
3.2	BBO ALGORITHMS	37
3.3	THE DIFFERENCE OF ECONOMIC LOAD DISPATCH	42
CHA	PTER 4.0: RESULTS AND DISCUSSIONS	43
4.1	INTRODUCTION	43
4.2	RESULTS AND DISCUSSION	45
СНА	PTER 5.0: CONCLUSION AND FUTURE DEVELOPMENT	48
5.1	CONCLUSION	48
5.2	FUTURE DEVELOPMENT	48
REFI	ERENCES	49