FINAL YEAR PROJECT REPORT ADVANCED DIPLOMA IN ELECTRICAL (POWER) ENGINEERING SCHOOL OF ENGINEERING MARA INSTITUTE OF TECHNOLOGY SHAH ALAM

COMPARATIVE STUDIES OF NUMERICAL INTEGRATION TECHNIQUE AS AN IMPLEMENTED COMPUTER ALGORITHM FOR SIMULATION OF INDUCTION MACHINE

BY:

MOHD. AZAN OMAR

ITM NO: 88400570

ROSLAN ABDUL RAHMAN

ITM NO: 88406920

PROJECT ADVISOR : EN. MUSTAFAR KAMAL HAMZAH

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to our advisor Mr. Mustafar Kamal Hamzah for his valuable guidance, great interest in the work and encouragement throughout the preparation of this project.

In between we are also grateful to Ms Feridah Bahari,

Mathematic Lecturer, who guide us on numerical analysis

for smoothing the rough edges of our computer program.

Last but not least thanks are due to our friend Mr.Jalil for his cooperation in graphic software.

SUMMARY

The objective of the project is to investigate and analyse various numerical integration technique in term of accuracy and time taken to do a simulation.

In addition, analysis are also perform to analyse the performance of an Induction Motor and to predict the system capability and stability. The simulation then carried out based on variation in terminal voltage(p.u) and frequency(Hz).

Graphical software are developed by using Turbo Pascal Version 5.5 whereas the output result to be displayed. The graphical output will be in superimposing of four type of voltage, slip, torque and current.

CONTENT

TITLE			Page
ACKNOWLEDGEMEN	rs		
SUMMARY			
CHAPTER 1	INTR	ODUCTION	1
CHAPTER 2	INDUCTION MACHINE EQUATIONS		5
	2.1	Mathematic Model Of An	
		Induction Motor	ద
CHAPTER 3	NUME	RICAL METHODS	11
CHAPTER 4	DISCRIPTION OF COMPUTER SOFTWARE		20
	4.1	Program Input	20
	4.2	Input Parameters/Data	20
	4.3	Type Of Simulation	20
	4.4	Program Output	22
	4.5	Simulation Real Time	23
	4.6	Program Structure	23
CHAPTER 5	ANAL	ANALYSIS	
	5.1	Findings	25
	5.2	Variation Of The Terminal	
		Voltage(p.u)	26

	5.3 Variation Of The Frequency	26
	5.4 Conclusion From Analysis	27
CHAPTER 6	GRAPHIC SOFTWARE	28
CHAPTER 7	FUTURE/RECOMMENDATION	33
CHAPTER 8	CONCLUSIONS	35
REFERENCES		
APPENDIX A	COMPUTER LISTING OF SIMULATION INDUCTION MOTOR	
APPENDIX B	COMPUTER LISTING OF MODIFIED SUBROUTINE RK	
APPENDIX C	COMPUTER LISTING OF GRAPHIC SOFTWARE	
APPENDIX D	SIMULATION PARAMETERS	
APPENDIX E	GRAPHIC OUTPUT	