COMPLEX POWER FLOW THROUGH TRANSMISSION LINE

This project report is presented in partial fulfillment for the award of the Bachelor in Electrical Engineering (Hons)

of

MARA UNIVERSITY OF TECHNOLOGY

NUR AZWANI BINTI MOHD KHAIRUDDIN
Faculty of Electrical Engineering
MARA UNIVERSITY OF TECHNOLOGY
40450 SHAH ALAM
SELANGOR

OCTOBER 2003

ACKNOWLEDGEMENT

In the name of Allah s.wt.

Most Gracious Most Merciful

I would like to express my gratitude to my project supervisor, Puan Bibi Norasiqin binti Sheikh Rahimullah for her kindness, support and concern in helping me throughout the completion of this project. Her guidance, suggestion and constructive ideas are greatly appreciated.

I am also indebted to the various help and discussions offered by lecturers, Encik Ahmad Farid, Cik Saadiah Said, Encik Murtadha Othman, Encik Razali and my friends. Thank you for their time and effort in supporting, guiding and advising me to make this project successful.

Last but not least, I would also like to thank my family for their understanding and continuous encouragement in completing this course and project report.

Nur Azwani binti Mohd Khairuddin

Faculty of Electrical Engineering MARA University of Technology Shah Alam

OCTOBER 2003

iv

ABSTRACT

This report describes a developed program to evaluate the complex power flow in the transmission line. The program is developed using Matlab V6.5. To facilitate the performance calculations relating to the transmission line, only short length lines are considered in developing the program. This shows that the proposed developed program is able to provide accurate result. Apart from that, the developed program provides faster result. These results may be used to determine the consequences of transmission line performance on the operation of a power system.

TABLE OF CONTENTS

СНАРТ	ER	PAGE
TITLE		i
DECLARATION		ii
APPROVAL SHEET		iii
ACKNO	DWLEDGEMENT	iv
ABSTRACT		v
TABLE	OF CONTENTS	vi
LIST OF FIGURES		ix
LIST OF TABLES		X
LIST O	F ABBREVIATIONS	xi
1	INTRODUCTION	
	1.1 Introduction	1
	1.2 Objectives	2
	1.3 Methodology	3
	1.4 Scope of the Thesis	4
2	TRANSMISSION LINE	
	2.1 Introduction	5
	2.2 Transmission and Subtransmission	5
	2.3 Transmission Lines	7
	2.3.1 Transmission line models	8
	2.3.2 Short line model	9
	2.3.3 Complex power flow through	
	transmission lines	13

3 POWER FLOW FORMULATION

4

3.1 Introduction	17
3.2 Basic Techniques for Power Flow Studies	17
3.2.1 Load bus	18
3.2.2 Regulated bus	18
3.2.3 Slack bus or swing bus	19
3.3 Power Flow Analysis Equation	20
3.3.1 Adding Generator Busses To Power Flow	
Studies	23
3.4 The Gauss-Seidel Method	25
3.5 Gauss-Siedel Iterative Method	28
3.5.1 Example on Gauss-Siedel Method Solution	29
PROGRAM DEVELOPMENT	ند ند. ند ند
4.1 Introduction	31
4.2 MATLAB Programming	32
4.3 Developing Program Using Matlab	32
4.3.1 Design Procedure	35
4.3.1.1 Input Parameter	37
4.3.1.2 Power flow formulation	37
4.3.1.3 Perform calculation	37
4.3.1.4 For 30% growth in load	37
4.3.1.5 Display	37
4.4 Developing Gauss-Siedel Power Flow Algorithm	37
4.4.1 Calculating the bus admittance matrix Y_{bus}	40
4.4.2 Selecting a slack bus	40
4.4.3 Selecting initial estimates for all bus voltages	40