UNIVERSITI TEKNOLOGI MARA

SCREENING THE ALTERNATIVE FOR ITLC-SG

MOHAMAD KHUZAIME BIN AMET

Dissertation submitted in partial fulfilment of the requirement for the Degree in Bachelor of Pharmacy (Hons)

Faculty of Pharmacy

January 2012

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah because Allah SWT permission this research can be completely done in the given time. This research reflects the talent and hard work and also contribution of many people. Here I want to express my thanks to all people who have involved in completing this research.

I wish to express my gratitude to my supervisor of this research, Mr. Muhamad Faiz for his valuable guidance and advice. He inspired me to work on this project. His willingness to motivate me contributed to my project. In addition, thanks to our research assistant, Mrs. Maisarah Mohd Zain due to her hardwork and consistency in helping me during this study. This appreciation also goes to Dr. Shafie Khamis, Head of Research, who give permission to use the laboratory and facilities at the Malaysia Institute Nuclear Technology (MINT) and Madam Zatul, Radiopharmacist from Hospital Besar Kuala Lumpur (HKL) who willing to provide the ^{99m}Tc.

Last but not least, an honourable mention goes to my family and friends for their understandings and supporting me in completing this research. Without helps of the particulars that mentioned above, I would face difficulties while running this research.

TABLE OF CONTENTS

		Page
TITI	LE PAGE	
	ROVAL	
	COWLEGDEMENT	ii
	LE OF CONTENTS	iii
LIST OF TABLES		V
	T OF ABBREVIATIONS	vi
ABS	TRACT	vii
CHA	APTER ONE (INTRODUCTION)	
1.1	Background of study	1
1.2	Objectives of study	2
CHA	APTER TWO (LITERATURE REVIEW)	
2.1	Searching for alternative	3
2.2	Application of Tc ^{99m}	
	2.2.1 ^{99m} Tc-Pyrophosphate	5
	2.2.2 ^{99m} Tc-HMPAO	6
	2.2.3 ^{99m} Tc- MAA	7
	2.2.4 ^{99m} Tc-tetrofosmin	8
	2.2.5 ^{99m} Tc- DTPA	8
	2.2.6 ^{99m} Tc-colloidal rhenium sulphide	9
	2.2.7 ^{99m} Tc-MAG3	10
	$2.2.8 ^{99\text{m}}\text{Tc-DMSA}$	11
	2.2.9 ^{99m} Tc-MDP	12
2.3	Paper Chromatography	13
	2.3.1 Whatmann filter paper	13
	2.3.2 ITLC-SG	14
CHA	APTER THREE (METHODOLOGY)	
3.1	Preparation of radiopharmaceuticals	15
3.2	Radionuclide purity assay	
	3.2.1 Solvents preparation	16
	3.2.2 Stationary phase preparation	17
	3.2.3 Strip preparation	17
	3.2.4 Development of chromatogram	17
3.3	Result analysis	19
СНА	APTER FOUR (RESULT)	
4.1	Accumulation of free pertechnetate	20
4.2	99mTc-Colloidal rhenium sulphide	21
4.3	99m Tc-MAA	24
4.4	^{99m} Tc-Nanocolloid	26
4.5	^{99m} Tc-DMSA	28

4.6	^{99m} Tc-MDP	30
СНА	APTER FIVE (DISCUSSION)	37
5.1	Particulate radiopharmaceuticals	38
	5.1.1 99mTc-colloidal rhenium sulphide	38
	5.12 ^{99m} Tc-MAA	40
	5.1.3 ^{99m} Tc-nanocolloid	41
5.2	Polar radiopharmaceuticals	42
	5.2.1 ^{99m} Tc-DMSA	43
	5.2.2 ^{99m} Tc-MDP	44
CHAPTER SIX (CONCLUSION)		47
BIBLIOGRAPHY		49
APP	ENDIX	

ABSTRACT

The aim of our study is to screening the alternative for ITLC-SG. It is necessary to do this study due to the discontinuation of ITLC-SG in the market. The methods we used were several radiopharmaceuticals tested on different systems (stationary and mobile phase). The alternative methods were validated by comparing the result with established systems. The results showed that the radiopharmaceutical tested mostly produced positive result when Whatmann filter paper 1 (W1) was used as stationary phase. However the experiment was done basically at the very surface, in addition with certain limitation during the study. Further study should be done to ensure the validity of the result.