

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

TERENGGANU

IOT CONNECTED SAFETY HELMET FOR NOISE HAZARD PROTECTION

NO.NAMESTUDENT ID1.MUHAMMAD AFIF BIN ASUADI20172276222.KHAIRUL AMIRIN BIN RIDZUAN2017227178

SUPERVISOR NAME:

MOHAMAD TAIB BIN MISKON

ACKNOWLEDGEMENT

"In the name of Allah, Most Gracious, Most Merciful"

All the praised to Allah (SWT) because of His permission and guidance, we have managed to complete our Final Year Project (FYP). So, we would like to dedicate our deepest gratitude to Allah (SWT) for His blessing so that we successfully complete this report.

First and foremost, we would like to express deepest appreciation to all those people who assisted us in completing this project. Regardless thanks to final year project advisor, Sir Mohamad Taib Bin Miskon which had giving the guidance for developing this application, tolerate in the project and performance.

He also helped our team to organize our final year project very well especially in guiding us to create our project and contribute many ideas especially in how make our project become success, interesting and also bring more benefits to the users in future. Next, we would like to thank the authority of Universiti Teknologi Mara (UiTM) for providing us with facilities to complete this project.

The support and encouragement from all the people above will always be a pleasant memory throughout our life. May God blesses them.

IOT CONNECTED SAFETY HELMET FOR NOISE HAZARD PROTECTION

MUHAMMAD AFIF BIN ASUADI, KHAIRUL AMIRIN BIN RIDZUAN

MOHAMAD TAIB BIN MISKON

Faculty of Electrical Engineering

Diploma in Electrical Engineering (POWER)

Dungun, Terengganu

Afifasuadihidayah@mail.com, khairulamirin645@gmail.com

EXTENDED ABSRACT

Abstract— Current situation now that have a problem about hearing. Many of workers according to statistics from Center of Disease Control and Prevention, 17% of workers expose to hazardous noise each year. This project was created to redesign the safety helmet by adding additional safety precautions measures using the relevance technique by using IoT and to develop a system to monitor the use of safety helmet at the noisy workplaces. NodeMCU is used as microcontroller to select the output depending on user's input selection. Sound sensor is used to detect the noise and the system will operate the components such as vibrator motor and LED. The value of the output will display at laptop and also send the information through Telegram. Result indicated that this project achieved the objective to protect from noise hazard. Further improvement can be made by modified it be more easy to use and more high quality.

Keyword: NodeMCU, Blynk, Internet of Thing (IoT), sound sensor

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	i
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	TABLE OF CONTENTS	iv-v
	LIST OF FIGURES	vi-vii
	LIST OF TABLES	vii
	LIST OF ABBREVIATIONS	viii
1.	INTRODUCTION	
	1.1 Background of study	1
	1.2 Problem Statement	2
	1.3 Objective	2
	1.4 Scope of Study	3
2.	THEORETICAL BACKGROUND	
	2.1 Theoretical Background	4
	2.11 A Brief Overview	4-5
3.	METHODOLOGY	
	3.1 Methodology Process	6
	3.1.1 Flow Chart	6
	3.1.2 Block Diagram	7
	3.2 System Description	8
	3.2.1 Schematic Diagram	8
	3.2.2 Hardware Development	9-11

3.3 Circuit Testing and Troubleshooting	12
3.3.1 Blynk Application	12-13
3.4 PCB Board Design	14
3.4.1 Printed Circuit Board (PCB)	14-17
3.5 Node-RED programming	18
3.5.1 How To Program Node-RED For IoT	18-19

4 **RESULT AND DISCUSSION**

4.1 Simulation Result	20
4.1.1 Arduino Integrated Development Environment	20-22
Software (IDE)	
4.2 Data Analysis	23
4.2.1 Experiment 1: Activation using Blynk Apps	23
4.2.2 Experiment 2: Calibration Test	24
4.2.3 Experiment 3: Node-RED Test	25-26
4.2.4 Device Functionality Test	27-29

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion	30
5.2 Recommendation	30

30

REFERENCES

APPENDICES

Appendix A: Price Every Component	31
Appendix B: Price of Prototype	32
Appendix C: Price of booth	32
Appendix D: Datasheet of Component	33-38
Appendix E: Poster	39-40
Appendix F: Technical Paper	41-49