

FINAL YEAR PROJECT REPORT

ENERGY AUDITING FOR FACULTY OF APPLIED SCIENCE BUILDING

PREPARED BY:

ZAFRUL IDHAM BIN MOHD ZAHUDI ERNEST ERIC RAYMOND

98158153 97357862

DIPLOMA IN MECHANICAL ENGINEERING FACULTY OF MECHANICAL ENGINEERING MARA UNIVERSITY OF TECHNOLOGY 40450 SHAH ALAM SELANGOR D.E

MEI 2001

FINAL PROJECT

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

In the name of Allah, the Beneficent, the Merciful, Peace and Blessings upon his Messenger and Servant Muhammad SAW.

We would like to extend our appreciation to those who have directly and in directly contributed invaluable assistance, co-operation and support in completion of this final project report.

Our special thanks goes to our Adviser Prof. Madya Ir. Dr. Abdul Rahman Bin Omar who has constantly given advice and guidance in completing our final project.

Next, we also would like to express our appreciation to En. Maliki Abdul Ghani as an Engineer in Maintenance Division (UiTM) for contributions in making the successful completion of the using the equipment and collecting data. This study could not have been completed without the help and advice of various sources.

Finally, our family deserves the most appreciation for putting up with our through the thick and thin of my days Purdue. Last but not least, our gratefulness goes to our classmates, degree mechanical student, Nordin and Haris and our housemates for their patience, support and encouragement to complete this project.

We certainly would not have completed our diploma and research project without their continuous support, patience and understanding.

î

TABLE OF CONTENTS

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF FIGURE	iv
LIST OF TABLE	iv
LIST OF GRAPH	iv
ABSTRACT	v
CHAPTER 1: INTRODUCTION	1
1.1 Energy Supply	
1.2 Objective of Project	2 5
1.3 Scope of Project	5
CAPTER 2: LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Building Performance Fundamental	7
2.3 Orientation of the Building	10
2.3.1 Direction Orientation and Configuration of Building	10
2.3.2 Reduction in Window Area	10
2.3.3 Placement of Non-air-conditioned Rooms on Perimeter Zones	11
2.4 Construction Materials	12
2.4.1 Enhanced Thermal Insulation (Wall/Roof)	12
2.4.2 Highly Airtight, High Thermal Insulation Window	14
2.5 Surrounding Condition	15
2.5.1 Building Thermal Load Reduction By Planting	15
2.5.2 Mitigation in Urban Climate Condition By Water and Greenery	16
2.6 Window and Doors	16
2.6.1 Blind	16
CHAPTER 3: METHODOLOGY OF ENERGY AUDITING	17
3.1 Data collection about Floor Area	17
3.2 Field (On Site Observation)	17
3.3 Measurement (Data Collection on Thermal Condition)	18
3.3.1 Light Meter	19
3.3.2 Thermometer	19
3.3.3 Measuring Tape	19
CHAPTER 4: ENERGY EQUIPMENT	20
4.1 Types of air-conditioning	20
4.1.1 Room air-conditioning	20
4.1.2 Split Unit	20
4.1.3 Package air-conditioning	21
4.2 Lighting	21
4.2.1 Types of Lamps	21
4.2.2 Discharge Lamp	21

CHAPTER 5: CASE STUDY	26
5.1 FAS Building	26
5.2 FAS Building Operation	27
5.3 Plan of FAS	29
5.4 Windows and Outside Door Description of FAS	36
5.5 Room Data of FAS	50
5.6 Building Function and Operation of FAS	60
CHAPTER 6: ANALYSIS	70
6.1 Calculation for Lighting at Lecturer Theater	70
6.2 AHU Room (Supply to Lecturer Theater)	73
CHAPTER 7: COMMENT & SUGGESTION	75
7.1 Comment	75
7.2 Suggestion	76
REFERENCE	78
APPENDICES	

ABSTRACT

An Energy Audit simply looks at how energy is being used and figures out how energy can be saved. This process has the two obvious benefits of saving money (which can be spent on supplies instead of energy) and helping the environment. However, there is another benefit that is hidden: We have learned a great deal from energy auditing process.

The goal of Energy Auditing at Faculty of Applied Science is to make energy improvements cost-effective to University Technology Mara facilities. It makes quick and easy to implement energy efficient upgrades by providing, among other energyrelated services, inexpensive financing options.

Energy audit involves assessment of a building's energy cost and efficiency through the analysis of energy bills and a survey of the building. Energy audit will identify and provide a savings and cost analysis of low-cost/no-cost measures or improvements. Examples include, but are not limited to: calculating lighting improvements, control-application effect calculations, and effects on operational changes to heating fuel and electrical savings recommendations.