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Introduction

The study of Hankel determinant is one of the most famous coefficient inequalities in
geometric theory functions that still being study by many researchers. At the end of 2020, the
research on Hankel determinant have reach to the fourth Hankel determinant, H,() . In this
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research, the focus is on the inequalities of or better known as second Hankel

determinant. Krishna, Venkateswarlu, and RamReddy (2015) considered that 4 denote the
class of analytic functions J(@) of the form (1.1.1) in the open unit disc E= {Z : |Z| = 1} .
Ehrenborg (2000) found that the Hankel determinant of order (n * 1) is the determinant of
corresponding Hankel matrix,
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Then, Noonan & Thomas (1976) defined that 7" Hankel determinant of /~ for 4 =1 by
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The second Hankel determinant with =2 and =2 | gives @ ] for S
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’a2a4 —a3‘ |H2 (2)| < ‘a2a4 - a ‘

so that and by applying triangle inequality As a
conclusion, second Hankel determinant is one of the coefficient inequalities that can be used
to achieve the new subclasses of analytic functions in this research.

Methodology

In a nutshell, the aim is to find the second Hankel determinant, H,(2) on certain subclasses of
analytic functions. The method is inspired by the method used by Janteng et al. (2007),
Kaharudin et al. (2011) and Yahya et al. (2013). This method used by many researchers and
produced plenty of subclasses of analytic function. To find the second Hankel determinant,

H,(2) , this methodology steps were utilized:
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Step 1:
Use lemma that proven by Pommerenke (1975), Toeplitz
determinant and Libera and Zlotkiewicz (1982 & 1983)

Step 2:
Determine the value of a,. a,. and a,

Step 3:

- [ a2
Solve for inequalities |ala4 = a‘|

Step 4:
Find the value of F(p.77). F'(p.n). G(p) and G'(p)

Step 5:
Evaluate for F(p.v), F'(p.v). J(p) and J'(p)

Step 6:
Obtain the upper bound and the final result of 4 ;
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Figure 1: Methodology steps

Results and Discussions

E=iz: 1
In this research, the new class of function I'(a.s.p) in the unit disk, {Z |Z| < } is

defined as the class of starlike functions. Functions in this class are normalized functions
given by

Re {e‘“ w} >0
h(z) .1

h(z)

z
where Ia\Sn, cos(@)> 6 1-B2° g —1SB<1

1. Representation Theorem
Theorem 1

Let /€5 be given by Toeplitz determinant. Then, T@.0.8) ifand only if
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2. Upper Bound of Second Hankel Determinant
Theorem 2
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then,
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Corollary 3

T(a,é,l)

For , let /" be functions given in (4.1). If B=1 , then this class will reduced to

Yahya et al. (2013). Therefore, the upper bound for second Hankel determinant 7(a.5.p) is

s$+iA +(§jA2
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and Ao $09266 p [0204 — 35 ‘ as stated by Janteng et al. (2007) where inequality
h(z) = ——

adheres for the function in which -z,

Conclusion

The pinnacle of this research is to determine the coefficient inequality of starlike functions.
By going back to the objective of study, this research managed to obtain upper bound of the
second Hankel determinant for the new generalized subclasses of analytic functions

T(a.5.B)
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