UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF INNOVATIVE ROLLED-IN STIFFENERS FOR PROFILED WEB GIRDERS SUBJECTED TO SHEAR LOADING

NAZIRAH BINTI AB. WAHAB

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Civil Engineering

November 2012

ABSTRACT

A girder whose web is profiled can lead to a structural system of high strength-toweight ratio. In 1960s, the usage of a flat web girder had been replaced with profiled web since this profiled web can increase stability against buckling. The usage of girders with profiled webs has become progressively popular as these girders can reduce self-weight of the structure and increase structural efficiency. Use of profiled configuration in the web provides uniformly distributed stiffening in the transverse direction of the girder. In this study, an innovative idea is introduced to improve the efficiency of the web through intermediate rolled-in stiffeners. The shear capacities of a series of profiled web girders with intermediate rolled-in stiffeners have been numerically studied using a commercially available finite element software LUSAS. The numerical study includes the development non-linearities of material and geometry of finite element models, whose results are compared with previous experimental results. The entire plate components such as flanges, web and rolled-in stiffeners were modelled using eight-noded quadrilateral thin shell elements. Each specimen was tested under a shear load placed on the top flange. The results from the finite element analysis are presented and discussed. The shear capacities of different configurations profiled webs with intermediate rolled-in stiffeners and their buckling modes are discovered. The buckling modes that have occurred in this study are local and global buckling mode. The typical failure mode of a girder with profiled web is initially in the local buckling mode. After reaching a peak load, the buckling propagated to other folds which then transformed and extended to a global buckling mode. In the process of buckling, the load displacement relationship of the girder was switched to a sudden and steep descending branch. The buckling can reduce the postbuckling shear capacity in the range of 20% to 50% of the ultimate shear capacity. Generally, whenever rolled-in stiffeners are introduced within the profiled web, the web is able to cater more loads.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Special appreciation goes to my supervisor, Datin Prof. Dr. Hanizah Binti Ab Hamid, for her supervision and constant support. Her invaluable help of constructive comments and suggestions throughout the thesis works have contributed to the success of this research. Not forgotten, my appreciation to my co-supervisor, Prof Dr Azmi Bin Ibrahim for his support and knowledge regarding this topic.

I am grateful to all the office staffs and technicians of Faculty of Civil Engineering for their co-operations. Special thanks for Ministry of Higher Education (MOHE) and also to UiTM in providing me a Young Lecturer Scheme for my study. My acknowledgement also goes to Research Management Institute (RMI) UiTM Malaysia, Shah Alam for granting me generous financial support that enabling this work to be successfully completed.

My deepest gratitude goes to my beloved parents; Ab. Wahab Bin Tahir and Meriam Binti Awang and also to my siblings for their endless love, prayers and encouragement. Sincere thanks to all my friends for their kindness and moral support during my study. Thanks for the friendship and memories. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.

TABLE OF CONTENTS

				Page		
AUTH	IOR'S D	ECLAR A	ATION	ii		
ABSTRACT						
ACKNOWLEDGEMENTS						
TABL	E OF C	ONTENT	'S	v		
LIST	OF TAB	LES		vii		
LIST	OF FIGI	IRES		viii		
LIST	OF ABB	REVIAT	IONS	xi		
CHAP	TER OI	NE : INT	RODUCTION	1		
1.1	Backgro	ound		1		
1.2	Profiled	l Web Gir	ders with Intermediate Rolled-In Stiffeners	2		
1.3	The Statement of Problem					
1.4	Objectives of Study					
1.5	Signific	ance of S	tudy	4		
1.6	Scope of	of Study		5		
	•	•				
CHAF	PTER TV	VO : RE	VIEW OF RELATED LITERATURE	6		
2.1	Introdu	ction		6		
2.2	Overvie	ew of Res	earches on Girders with Profiled Webs	7		
	2.2.1	Differen	t Shapes of Profiled Web Girders	8		
2.3	Bucklin	ng Behavi	our of Profiled Web Girder Subjected to Shear Load	10		
2.4	Shear Strength of Plate Girder under Shear Load					
	2.4.1	Shear St	trength of Conventional Flat Web Plate Girder	14		
	242	Shoor St	near Load	16		
	2.4.2		iteligni of Fromed web Flate Offder under Shear	10		
		2.4.2.1	Shear Capacity of Profiled Web Plate Girder	16		
			Based on Local Buckling			
		2.4.2.2	Shear Capacity of Profiled Web Plate Girder	18		
			Based on Global Buckling			
2.5	Finite E	Finite Element Studies on Profiled Web Girders				
	2.5.1 Geometric and Material Non-Linearity					
	2.5.2	Meshing		20		
2.6	Imperfe	ection Sen	sitivity	23		
2.7	Conclu	sion		25		
CHAI	PTER TH	HREE : F	TINITE ELEMENT STUDY	26		
3.1	Introdu	ction		26		
3.2	Non-Linear Finite Element Modelling of Profiled Web Girder					
	3.2.1	Finite E	lement Model	30		
		3.2.1.1	Selection of Finite Element	32		
		3.2.1.2	Development of Finite Element Modelling of	33		
			Profiled Web Girder			
		3.2.1.3	End and Loading Conditions	33		
	3.2.2	Implem	entation of Finite Element Model	36		
		3.2.2.1	Linear Buckling Analysis	36		

	3.2.2.2 Non-Linear Buckling Analysis	38			
	3.2.3 Convergence Study	39			
3.3	Experimental Work	40			
3.4	Validation of Non-Linear Finite Element Analysis with Pre-Existing 4 Experimental Results (Elgaaly, 1996)				
3.5	Buckling Behaviour of Profiled Web	51			
3.6	Conclusion	57			
CHAP	TER FOUR : PARAMETRIC STUDY	58			
4.1	Introduction	58			
4.2	Model Configuration	61			
4.3	Finite Element Results and Discussion	64			
	4.3.1 Comparison of Profiled Web Girder with and without Rolled-In Stiffener	64			
	4.3.2 Comparison of Profiled Web Girders with Single Row Rolled-In Stiffeners and Double Rows Rolled-In stiffeners	70			
4.4	Buckling Modes of Girders with Intermediate Rolled-In Stiffeners	74			
4.5	Factors Affecting the Ultimate Shear Load of a Profiled Web	79			
	4.5.1 Influence of Intermediate Rolled-In Stiffeners	79			
	4.5.2 Influence of Web Depth	81			
4.6	Post-Buckling Capacity	86			
4.7	Material Used	89			
4.8	Conclusion	91			
CHAP WITH	TER FIVE : COMPARISON OF FINITE ELEMENT RESULTS	92			
5 1	Introduction	92			
5.2	Shear Resistance of Profiled Web Girders with Single and Double	92			
	Rows Rolled-In Stiffeners Based on Global Buckling Mode	2			
	5.2.1 Moment of Inertia for Profiled Web with Single Row Rolled-In Stiffeners	93			
	5.2.2 Moment of Inertia for Profiled Web with Double Rows Rolled-In Stiffeners	93			
	5.2.3 Shear Resistance Based on Local Buckling	94			
	5.2.4 Shear Resistance Based on Global Buckling	97			
5.3	Conclusion	101			
СНАР	TER SIX : CONCLUSIONS AND RECOMMENDATION	102			
6.1	Conclusions				
6.2	Recommendations	104			
REFERENCES APPENDIX					