UNIVERSITI TEKNOLOGI MARA

TERAHERTZ-RAY INTERACTIONS MODELLING BASED ON X-RAY INTERACTIONS WITH BONE

AHMAD ZULHILMI BIN ARSHAD

Thesis submitted in fulfilment of requirements

for the degree of

Master of Science

Faculty of Health Sciences

February 2012

ABSTRACT

In this study, a model of Terahertz-ray interactions on bone tissue was developed. Due to insufficient understanding on its interactions and the lack of literatures data, the conceptual interactions model was developed based only on the physical interactions of X-ray with bone. There are two objectives in this study, namely; 1) to elucidate the physical interactions of Terahertz-ray with bone based on X-ray interactions with bone, and 2) to develop a model of Terahertz-ray interactions with bone with emphasize on scattering and absorption interaction. In developing the Terahertz-ray model, the three literature data have been extrapolated to cover the energy range from 2 to 6.2 meV. The model was analysed and simulated using Matlab software to simulate the Terahertz-ray interactions with bone and a completed application have been created named as XT-ray. The established model provides a conceptual understanding on Terahertz-ray interactions with bone which requires improvement and validation in the future especially by means of experimental data. The results pertaining to this study are the elucidation of the physical interactions of Terahertz-ray with bone. The parameters that have been compared for both rays are the production and detection as well as the scattering and absorption interactions processes. There are three different literature data that have been utilized from the infrared spectral region. As a result, it can be summarized that the rate of absorption and scattering interactions of the Terahertz-ray with bone is less than the rate of the X-ray scattering and absorption interactions with bone tissue. In brief, there are two differences between the three studies in the review namely an energy range and instrument used which are labelled as S1, S2, S3 for scattering interactions; and A1, A2, A3 for absorption interactions. The result from the S1 (scattering) and A1 (absorption) interactions are selected to develop the model of Terahertz-ray interaction with bone. The resulting Terahertz-ray Interaction Model with Bone shows the scattering interaction is directly proportional to its energy. However, the Terahertz-ray absorption interaction with bone is slightly increasing from 2 to 5 meV and beyond 5 meV to 6.2 meV, its absorption is constant.

ACKNOWLEDGEMENT

Bismillahirahmaniraahim...

Alhamdulillah thanks to the Most Gracious and Merciful God for giving me the strength to finish my thesis on Terahertz-ray interactions modelling.

I could never have finished this study without the assistance of many people. Firstly, I would like to thank my supervisors, Professor Dr. Md Saion Salikin and Associate Professor Dr. Yusof Munajat for their assistance and guidance during my research and writing. They have spent countless hours of reading the text, making many corrections and valuable suggestions.

I would also like to thank Mrs. Lim Heng Moh and Mrs. Zuliana Zakaria for helping me in the completion of this thesis. I am very grateful to have received the eDana UiTM and Mini Budget 2009 grants which facilitates the completion of this study.

I extend my deepest gratitude and thanks to my colleagues at the Postgraduate Workstation of the Faculty of Health Sciences for their support, assistance and advice throughout the two years of this study.

Finally, I would like to thank my family and friends for all their prayers and support.

TABLE OF CONTENTS

TITLE	E PAGE	i
AUTH	OR'S DECLARATION	ii
ABSTI	RACT	iii
ACKN	OWLEDGEMENT	iv
TABL	E OF CONTENTS	V
LIST (OF TABLES	viii
LIST (DF FIGURES	ix
LIST (DF SYMBOLS AND ABBREVIATIONS	xi
СНАР	TER 1 INTRODUCTION	1
1.1	Overview	1
1.2	Background of the Study	2
1.3	Problem Statement	3
1.4	Objectives of the Study	4
1.5	Scope and Limitation of the Study	4
1.6	Significance of the Study	5
1.7	Organisation of this Thesis	5
1.8	Summary	6
СНАР	TER 2 TERAHERTZ-RAY AND E	ELECTROMAGNETICS
	WAVES	7
2.1	Overview	7
2.2	Electromagnetic Waves	7
2.2	E.1 EM Wave Production in General	8

2.2.2	Electromagnetic Spectrum	10	
2.2.3	Classification of Radiation	11	
2.3 X-	ray	13	
2.3.1	Production of X-ray	13	
2.3.2	X-ray Properties	15	
2.4 Te	erahertz-ray	19	
2.4.1	Production and Detection of Terahertz-ray	20	
2.4.2	Properties of Terahertz-ray	24	
2.4.3	Terahertz-ray Applications	24	
2.5 Int	teraction of Electromagnetic Radiation with Matter	25	
2.5.1	The Cross-section	25	
2.5.2	Interaction of X-ray with Matter	26	
2.5.3	Attenuation, Linear Attenuation & Mass		
	Attenuation Coefficient	31	
2.5.4	Terahertz-ray Interaction with Matter	34	
2.6 Modelling			
2.6.1	Definition of Model	39	
2.6.2	Types of Modelling Approaches	39	
2.6.3	Data Curve Fitting	41	
2.6.4	MATLAB	41	
2.7 Su	Immary	44	
CHAPTER 3 RESEARCH DESIGN			
3.1 Ov	verview	45	
3.2 Fr	amework for this Study	45	
3.2.1	Stage 1: Gathering Information	46	
3.2.2	Stage 2: Standardize the Parameter	47	