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Introduction

Geometric function theory is a study about geometric properties of certain classes of analytic
functions. There are many classes of functions in geometric function theory that have been
introduced in this field of research. Geometric function theory has a wide area to explore, thus

this research will focuses on one of the coefficient inequalities in geometric function theory

which is second Hankel determinant on upper bounds for the functional ‘aza , —alz‘.

Ehrenborg (2000) declared that the Hankel determinant of order (n-+1) is determinant of the

corresponding Hankel matrix and it can be defined by

a, a, - a

a 4, -4,y

dEt(aHj )Osi,an = det

an an+1 a2n
Next, the g** Hankel determinant of s for 4 >1 as
an an+1 T an+q+l
an+1 an+2 T an+q+2
H, (n) =la . 4 = s
an+q—1 an+q T an+2q—2

had been stated by (Noonan and Thomas ,1976). In this research, the second Hankel

determinant is used in the case of ¢ = 2 and » =2 namely,

a, a
H2(2)= a2 :

2
=|a2a4 —a, ’
3 4y

11




MATHEMATICS - in Applied Research// Vol. 001 - NOV 2021

In conclusion, second Hankel determinant plays important role in the theory of univalent
function. In this research, a new subclass in univalent functions will be discover and the

coefficient inequalities of second Hankel determinant will be determined.

Methodology

In this research, analytics proving is choosen instead of computational proving. Precisely, it is
focusing on generalizing the new subclasses of analytic functions, then solving the problem of
upper bound for second Hankel determinant as stated by Janteng, Halim, and Darus (2007),
Kaharudin et al. (2011) and Yahya et al. (2013). The researchers implement this methodology
steps to find upper bound for second Hankel determinant:

Step 1:

Use Lemma that have been proved by

Pommerenke(1975), Toeplitz determinant, Libera
and Zlotkiewicz (1982, 1983)

Step 2:

Determine a,,a,2and a,

Step 3:

Solve for I(L(L '-ﬂﬂ

Step 4:

Find F(p,n)F'(p.n).G(p) and G'(p)

Step 5:

Evaluate F(p.v)F'(p.vlJ(pland J'(p)

VU Uy

Step 6:

Figure 1: Methodology steps
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Results and Discussions
The class of o —close-to-convex functions is denoted as W(a, 0, ﬂ). This class of functions

are normalized functions f e A satisfy the condition

e85, (U]

M (z)

Where |a| < 7,cos(a)>5,M(z)=

and —-1<p<I1.

1- 6z

1. Representation Theorem

Theorem 1

Let fes and f eW(a,6,p) then

of(z)

M(z)
cosa —90

2. Upper Bound of Second Hankel Determinant

2* —isina -6

eP,zel.

Theorem 2

2
Let feW(a,5,p) then B:—@+2ﬂ +2,K=¢
27 3 16—1845—-18

\a2a4—a32\=7i2 (9,6—8/32){[\/—%+23£+2J[—7,8—8[\/—%+27’62+2}ﬁ+9/5’2]
{\/_W_'_WHJF\/_W_I_W+2+9[_14ﬂ+2ﬁz+2J]
273 2\ 27 3 4\l 27 3
+|:2+@_Zﬂﬂ[2_8ﬂ+£[‘f—ﬁ+£+2]nfl,ﬁ
27 3 ||2 4|V 277 3
“148 Y o oo 14 Y
+[[16—18/3—18J (8-95) 9[16—18/3—18J

W | 4.0 .
16-184-18

and L =8-94. Then,
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Corollary 3
For W(a,8,p). let 7 be the functions given in Theorem 2. For g =1,then

|a2a4 - a32| <+ Ay DI _ T, Aasz(ﬂj
72 972 36 80

where 4, <1.206. The inequality takes holds of the function where M (z)= . Hence,

1-p8z

this inequality obtained is coincides to the result of Kaharudin et al. (2011).

Conclusion

The focus of this research is to find the upper bound of the second Hankel determinant for
W (a,6,B). The objective has been achieved by implementing Lemma of Pommerenke (1975),

Lemma of Toeplitz determinants and Lemma of Libera and Zlotkiewicz (1982,1983).
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