UNIVERSITI TEKNOLOGI MARA

A NETWORK AWARE BASED RECOMMENDER SYSTEM FOR VOIP APPLICATION SERVICE IN ELEARNING ENVIRONMENT

NAZDIANA BINTI AB.WAHAB

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Networking

Faculty of Computer Science and Mathematics

November 2009

ACKNOWLEDGEMENT

First and foremost, all praise is to Allah, the Most Merciful, for His Love and Guidance. Salutations on the Prophet Muhammad (Peace be upon him), his family, and fellow companions.

In particular, I would like to thank my supervisor Puan Rosanita for her support, kindness and patience in the making of this thesis. I am also is greatly indebted to Mr Faisal for his continuing contributions as well as countless positive and helpful suggestions. His time and effort spent will not be forgotten and may Allah bless him always. To Mr Farouk, thank you so much for not giving up and the opportunities given until I finally get to this stage.

I thank my mom for everything she has done for me. Her support has helped me in many ways and indeed my life will be difficult without her. I also would like to acknowledge all my sisters and brother for the endless support. I am so grateful to God for blessing me with such a wonderful family.

For my husband, thank you so much for the love, encouragement and support. For his endless patience all this while, and he will always be important to me. For my beloved daughter, she is the greatest gift in my life ever and mummy loves you so much.

Last but not least, thank you to all my friends especially Wan Khadijah and Hisham for all helps and contributions.

It was not been easy for me as a mother, wife, employee and student. But with his will and strength given, *Alhamdulillah* today I am here writing the last page of the thesis. Thank you very much again to everyone mentioned above. Their enthusiastic support has contributed to the success of my thesis.

TABLE OF CONTENT

ś

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	iv
LIST OF FIGURES	vi
CANDIDATE'S DECLARATION	vii
ABSTRACT	viii

CHAPTER I

1. 1. 1.

INTR	ODU	CTI	ON
------	-----	-----	----

1.0 Background	1
1.1 Problem Statement	3
1.2 Motivation and Objectives	5
1.3 Scope of Thesis.	6
1.4 Thesis Contribution	7
1.5 Thesis Organization	8

CHAPTER II

LITERATURE REVIEW	
2.1 VOICE OVER IP	9
2.1.1 General Architecture	10
2.1.2 VOIP Network Protocol	11
2.1.3 Voice Compression and Encoding	13
2.1.4 VOIP Application Software	13
2.1.5 Challenges and Issues for IP-based Voice and Video	14
End to End Latency	15
Packet Loss	
Jitter or Variable Delay	
³⁷ 2.1.6 Characteristic of Voice and Data in VOIP	18
2.1.7 Bandwidth Measurement	19
2.1.8 Bandwidth Measurement and Monitoring Tools	20
Pathload	20
• MRTG	21
Netpeeker	22
2.2 eLEARNING	
2.2.1 Education Evolution and Trend	24
2.2.2 Mobile Device as elearning Access Media	24
2.2.3 WIFI and Cellular Network Technology as Medium for Internet Access	25
• WIFI	25
• GPRS	
	-

• 3G	
2.2.4 Advantages of eLearning	
2.3 SKYPE	
2.4 INTEGRATION OF VOIP IN ELEARNING	

CHAPTER III

VI.	ETHODOLOGY	
	3.1 RESEARCH METHOD OVERVIEW	29
	3.2 INITIATION PHASE	32
	3.2.1 Scope and Area of Project	32
	3.2.2 Gathering Information and Identify Problem Statement	32
	3.3 PLANNING PHASE	32
	3.3.1 eLearning Prototype System with VOIP Application Integration	32
	3.3.2 Recommender System Algorithm for VOIP Services	34
	3.3.3 Bandwidth estimation Process	35
	3.4 EXPERIMENTAL PHASE	37
	3.4.1 Integration and Implementation of Pathload and MRTG	37
	3.4.2 Network Aware based Recommender System testing	
	a. Algorithm data range POC	43
	b. Algorithm Testing and Commissioning in eLearning prototype system	46
	3.5 ANALYSIS PHASE	47
	3.6 HARDWARE SPECIFICATION	48

CHAPTER IV

RESULT ANALYSIS AND DISCUSSION

4.1 Bandwidth Estimation using Pathload and MRTG	49
4.1.1 Experiment 1: GPRS Scenario	51
4.1.1 Experiment 1: GPRS Scenario.4.1.2 Experiment 2: 3G Scenario.	53
4.1.3 Experiment 3: ADSL Scenario	
4.2 Network Aware based Recommender Testing	55
4.2.1 Algorithm Data Range Proof of Concept	56
4.2.2 Algorithm Testing and Commissioning in eLearning prototype system	58

CHAPTER V

CONCLUSION	
5.1 Recommendation	

ABSTRACT

The varying bandwidth availability of a network path, has contributed to the unstable performance when running audio and video services over the internet network. VOIP application integration in eLearning system, which offers voice and video services, is one example of applications that has been affected by this varying network availability. To minimize this impact, a network based algorithm that could provide current network status on bandwidth availability, and then do the recommendation accordingly is needed. Therefore, this dissertation work, proposed a network based recommender that could be used in the application of VOIP services in eLearning environment. This paper showed the integration of VOIP in a simple eLearning prototype system. A network aware based algorithm is used to recommend users the best VOIP services available at that point of time (whether audio, video or data) based on the real time data obtained from bandwidth measurement tool. Pathload has been chosen as a measurement tool that estimates the available bandwidth of a network path.