UNIVERSITI TEKNOLOGI MARA

PERFORMANCE CHARACTERIZATION OF IEEE 802.11g IN A SMALL OFFICE HOME OFFICE (SOHO) FOR CONDOMINIUM ENVIRONEMENT

MOHD RAFIEI DAUD

2006667094

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Computer Networking)

Faculty of Information Technology and Quantitative Sciences

MAY 2008

ACKNOWLEDGEMENT

First and foremost I offer my sincerest gratitude to my supervisor, Tuan Haji Mohd Izani Mohamed Rawi, who has given invaluable support, encouragement, supervision and useful suggestions throughout this research work, which made him a backbone of this research and so to this thesis. His truly outstanding intuition has made him as a constant oasis of ideas and passions in wireless study, which exceptionally inspire and enrich my growth as a student. I am indebted to him more than he knows.

I wish to thank my best friend during this postgraduate course Murad, Kamal and Amin for helping me get through the difficult times, and for all the emotional support, entertainment, and caring they provided. Their moral support enabled me to complete my work successfully. Their encouragement and effort and without them this thesis, too, would not have been completed or written.

Words fail me to express my appreciation to my wife Naterah bt Mohd Lazim@Mohd whose dedication, love and persistent confidence in me, has taken the load off my shoulder. I owe her for being unselfishly let her intelligence, passions, and ambitions collide with mine. And thank to God with you precious gift, ours 47 days baby girl Hannah Balqis, her presence bring more cheerful to me and my wife.

Finally, I would like to thank everybody who was important to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one.

ABSTRACT

Performance Characterization of IEEE 802.11g in a Small Office Home Office (SOHO) for Condominium Environment

Keyword: Wireless LAN, IEEE 802.11g, Network Performance, Throughput

With the growing popularity of the wireless local area networks (WLAN) based on 802.11 a/b/g standards, it provides an alternative solution where communication is no longer restricted by wires and can be operate at any location. Despite the convenience of this mobility, the performance of a WLAN must be addressed carefully before it can be implemented and deployed. In this paper, we address the performance of IEEE 802.11g by changing the various key parameters on the actual performance of IEEE 802.11g. The focus is on observing the measured throughput when the network is flooded with a continuous stream of data. A series of controlled experiments are carried to assess the performance of 802.11g to find the maximum throughput under realistic conditions with the presence of interference. The impact of co-channel to throughput performance was discussed. In addition changing the adjacent channel and transmitted power level to throughput performance was exposed. Overall, the effective application level throughput was conducted under three sets of experiments. The analysis result and measurement campaign provides insights into the required provisioning for 802.11g WLAN to ensure it provides the needed coverage and capacity to intended users

TABLE ON CONTENT

CHAPTE	ER 1		8
INTROD	UCTIO	ON	8
1 IN	ITROI	DUCTION	8
1.1	BA	CKGROUND OF PROBLEM (WIRELESS DATA NETWORE	۲)11
1.2	PRO	OBLEM STATEMENT	11
1.3	OB	JECTIVES OF THE RESEARCH	12
1.4	SC	OPE OF THE RESEARCH	13
1.5	SIC	SNIFICANCE OF THE RESEARCH	14
1.6	SU	MMARY	15
СНАРТЕ	ER 2		17
LITERA	TURE	REVIEW	17
2 IN	ITROI	DUCTION	17
2.1	Wi	reless LAN Propagation Research	17
2.	1.1	Radio Frequency (RF) Coverage Measurement Techniques	17
2.1.2		Continuous Wave (CW) Transmitter and Power Meter	
2.1.3		Broadband Pulse Transmission	
2.	1.4	Wireless LAN Card Reported Signal Strength	20
2.	.1.5	Network Analyzer tools	21
2,2	Wi	reless LAN Related RF Propagation Research	21
2.	.2.1	Indoor Propagation Measurements	21
2.	.2.2	Wireless LAN Measurements with non-overlapping channel	22
2.3	Wi	reless LAN Network Performance Research	23
2.3.1		Network Performance Statistics	23
2.3.2		Delay: Latency and Inter Packet Delay	23
2.3.3		Throughput	24
2.	.3.4	Data Bandwidth	25
2.4	Net	twork Protocols	25
2.5	Net	twork Performance Measurement Techniques	26
2	.5.1	Command line based on UNIX software	27

252	File Transfor Heing ETD	20
2.3.2	The Transfer Using FTF	
2.5.5	Test Packet Based Software with IxCharlot 4.3 and AirMagn	et 4.029
2.6 W1r	eless LAN Related Performance Research	30
2.6.1	Early Wireless LAN Network Performance Measurements	30
2.6.2	Idealized Wireless LAN Performance Measurements	31
2.6.3	IEEE 802.11g Throughput Measurement in a Home Wireless	Network
	31	
2.6.4	Cause of throughput Variation in IEEE 802.11 Networks	32
2.6.5	Wireless LAN Performance Issues	33
2.6.6	Multiple AP interference of a Wireless LAN	33
2.6.7 In	npact of Using Overlapping Channels in Closed Proximity	34
2.7 · Sun	nmary of Prior Research	35
CHAPTER 3		36
METHODOLO	GY	36
3 INTROE	DUCTION	36
3.1 GA	THERING INFORMATION	39
3.2 PLA	ANNING AND SOFTWARE SETUP	40
3.2.1	Software Architecture Planning	40
3.2.2	LanTraffic V2	40
3.2.3	NetStumbler as RSSI Measurement Software	41
3.2.4	Related Software	42
• (Dperating System	42
• A	Antivirus	42
• V	Vidows Firewall	43
3.3 PLA	ANNING AND HARDWARE SETUP	
3.3.1	Hardware Specification for TEST Segment	44
3.3.2	Hardware Specification for INTERFERENCE Segment	44
3.3.3	Network Design	46
3.4 EX	PERIMENTAL SCENARIO	47
3.4.1	Measurement Case	47
3.4.2	Measurement Scenarios	

×