
Beowulf Cluster: 
An Implementation and Testing 

by 

Abdul Haddis bin Abdul Aziz 
BSc Engineering (Mechanical) 

University of Warwick 

In partial fulfillment of the requirements 
for the degree of 

Master of Science in Information Technology 

Faculty of Information Technology and Quantitative Sciences 

UNIVERSITY TEKNOLOGI MARA 

October 2003 



ABSTRACT 

The use of computers within our society has developed from the very first usage in 1945 

when the modern computer era began, until about 1985 when computers were large and 

expensive. Two modern age technologies, the development of high-speed networking and 

the personal computer have allowed us to break-down these price barriers and construct 

cost effective clusters of PCs which provide comparable performance to super-computers 

at a fraction of the cost. As PC's and networks are in common use, this allows most 

commercial organizations, governments, and educational institutions access to high 

performance super-computers. 

The major difference between a network of PC's and a super-computer is the software 

which is loaded on each machine, and the way in which an application is processed, 

namely in parallel. Parallel processing is the method of breaking down problems or work 

into smaller components to be processed in parallel thus taking only a fraction of the time 

it would take to run on a stand-alone PC. 

The only drawback to this cost-effective way of computing is the lack of all in one 

package solution that can be implemented at once. The hardware keeps changing, the 

software and its documentation keeps changing and lack of integrity between its software 

environments [24] pose a great challenge for any Beowulf implementer. 

This paper describes the technologies and methodologies employed to achieve this 

breakthrough. Both opportunities afforded by this approach and the challenges 

confronting its application to real-world problems are discussed in the framework of 

hardware and software systems as well as the results from benchmarking experiments. 

l i 



Tabic of Contents 

ABSTRACT ii 

ABBREVIATIONS v 

CHAPTER 1: INTRODUCTION 

1.1 BRIEF HISTORY OF COMPUTING AND NETWORKING 1 

1.2 PARALLEL PROCESSING 2 

1.3 CLUSTER CLASSIFICATIONS :". 4 

1.4 BEOWULF CLUSTER BACKGROUND 6 

1.4.1 BEOWULF ADVANTAGES 7 

1.4.2 CLASSIFICATION 8 

1.4.3 SYSTEM DESIGN 10 

1.4.4 BEOWULF APPLICATIONS 11 

1.4.5 IMPLEMENTATION IN OVERSEAS AND MALAYSIA 12 

1.5 PROBLEM STATEMENT 14 

1.6 PROJECT SIGNIFICANT 15 

1.7 OBJECTIVE 16 

1.8 PROJECT SCOPE 18 

1.9 LIMITATIONS 19 

CHAPTER 2: LITERATURE REVIEW 

2.1 BEOWULF CLUSTER 21 

2.2 THE ROAD TO STANDARDISATION 22 

2.3 SYSTEM DESIGN 24 

2.3.1 Design Principles 25 
2.3.2 Hardware Design 26 
2.3.3 Software Design 28 
2.3.4 Current Offerings 29 

2.3.4.1 OSCAR 30 
2.3.4.2 NPACI Rocks Cluster Distribution 30 
2.3.4.3 openMosix 31 
2.3.4.4 Scyld 31 

2.4 CURRENT DEVELOPMENT 32 

2.4.1 I-Cluster 33 
2.4.2 Programmable NIC 33 
2.4.3 Supermon 34 
2.4.4 Bladed Beowulf 34 

2.5 CONCLUSION 35 

in 



CHAPTER 3: METHODOLOGY 

3.1 DATA COLLECTION 36 

3.2 PRELIMINARY KNOWLEDGE AND SKILLS 37 

3.2.1 Hardware 37 
3.2.2 Software 38 

3.3 CONSTRUCTION 39 

3.3.1 Network Topology 40 
3.4 SOFTWARE STACKS 41 

3.4.1 Redhat Linux Installation 41 
3.4.2 Disk space and directory consideration 42 
3.4.3 Download a copy of OSCAR and unpack on the server 42 
3.4.4 Configure and Install OSCAR 42 
3.4.5 Configure the Ethernet adapter for the cluster 43 
3.4.6 Copy distribution installation RPMs to /tftpboot/rpm 44 
3.4.7 RSH 44 
3.4.8 Telnet 44 
3.4.9 NTP Server 44 

3.4.10 SSH Server 45 
3.4.11 DHCP Server 45 
3.4.12 Routing 46 
3.4.13 Launching the OSCAR Installer 46 
3.4.14 Selecting Packages to Install 47 
3.4.15 Configuring OSCAR Packages 48 
3.4.16 Install OSCAR Server Packages 48 
3.4.17 Build OSCAR Client Image 49 
3.4.18 Define OSCAR Clients 50 
3.4.19 Setup Networking 51 
3.4.20 Client Installations 52 
3.4.21 Complete the Cluster Setup 52 
3.4.22 Test Cluster Setup 53 

CHAPTER 4: TESTING AND RESULTS 

4.1 TESTING AND BENCHMARKING 53 

4.2 POVRAY PVM RENDERING ENGINE 54 
4.2.1 Setting up PVMPOV 55 
4.2.2 Getting the sources 55 
4.2.3 Unpacking the sources 56 
4.2.4 Patching POV-Ray 56 
4.2.5 Building PVMPOV 56 
4.2.6 Installing the binaries 57 
4.2.7 Starting the PVM daemons 57 

iv 



4.2.8 Rendering in parallel 
4.2.9 Results 

CHAPTER 5: CONCLUSION 

5.1 CONTRIBUTION 

5.2 CONCLUSION 

CHAPTER 6: REFERENCES 

Abbreviations 

The following words and acronyms have been used throughout this document: 

Word List 

COTS 
GPL 
HPCC 
HPF 
I/O 
LAN 
MPI 
NCSA 
OS 
PC 
PVM 
SMP 
TFCC 

Definition 

Commercial Of The Shelf 
General Public Licence 
High Performance Cluster Computing 
High Performance FORTRAN 
Input Output 
Local Area Network 
Message Passing Interface 
National Computer and Science Alliance 
Operating System 
Personal Computer 
Parallel Virtual Machine 
Symmetric Multiprocessing Processor 
Task Force on Cluster Computing 

57 
59 

61 
62 

63 


