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ABSTRACT 

The use of computers within our society has developed from the very first usage in 1945 

when the modern computer era began, until about 1985 when computers were large and 

expensive. Two modern age technologies, the development of high-speed networking and 

the personal computer have allowed us to break-down these price barriers and construct 

cost effective clusters of PCs which provide comparable performance to super-computers 

at a fraction of the cost. As PC's and networks are in common use, this allows most 

commercial organizations, governments, and educational institutions access to high 

performance super-computers. 

The major difference between a network of PC's and a super-computer is the software 

which is loaded on each machine, and the way in which an application is processed, 

namely in parallel. Parallel processing is the method of breaking down problems or work 

into smaller components to be processed in parallel thus taking only a fraction of the time 

it would take to run on a stand-alone PC. 

The only drawback to this cost-effective way of computing is the lack of all in one 

package solution that can be implemented at once. The hardware keeps changing, the 

software and its documentation keeps changing and lack of integrity between its software 

environments [24] pose a great challenge for any Beowulf implementer. 

This paper describes the technologies and methodologies employed to achieve this 

breakthrough. Both opportunities afforded by this approach and the challenges 

confronting its application to real-world problems are discussed in the framework of 

hardware and software systems as well as the results from benchmarking experiments. 
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