UNIVERSITI TEKNOLOGI MARA

SITE SPECIFIC RESPONSE SPECTRUM ACCELERATION DUE TO SUMATRAN EARTHQUAKE: SCIENCE AND TECHNOLOGY COMPLEX, UITM SHAH ALAM.

AHMAD FAHMY BIN KAMARUDIN

Dissertation submitted in partial fulfillment of the requirements for the Master of Science in Civil Engineering (Structure)

Faculty of Civil Engineering

May 2006

ACKNOWLEGEMENT

Syukur Alhamdulillah, with blessing from The Almighty, and with the strength, spirit, devotion and determination bestowed upon me, I could finish this research for attaining a Master of Science in Civil Engineering (Structure) for the year 2006 within the stipulated time.

A thousand thanks should be given to Assoc. Prof. Dr. Azmi Bin Ibrahim. As a supervisor to this study, he has given full co-operation, encouragement, guidance and assistance in all aspects to make this study a success.

Besides, my gratitudes should also be given to Mr. Ade Faisal from Universitas Muhammadiyah Sumatera Utara, Indonesia as co-supervisor to the study, for his support, assistance, guidance and advice throughout the project.

I also would like to thank Mr Asmadi Abdul Wahab and Madam Irene from Malaysia Meteorological Services, for their co-operation in supplying all seismological data used in this study.

I am greatly indebted to Assoc. Prof. Dr. Taksiah A. Majid (USM), Mr. Nor Azizi Yusoff (KUiTTHO), Dr. Hashem Al-Mattarneh (UiTM), Asoc. Prof. Ir. Dr. Sooi Took Kwong (UiTM), Ir. Shan Suleiman (SSM Associates Sdn. Bhd.), Dr. Hamidah Mohd. Saman (UiTM), Assoc. Prof. Ir. Dr. Zainab Mohamed (UiTM), Assoc. Prof. Rahman Mahmood (UiTM), Mr. Ismacahyadi Bagus Mohd. Jais (UiTM), Mr. Mohd Hadli Hassan (UiTM), Mr Masood Paknahad (UPM), and Mr. Hedriyawan (UTM) for the assistance and co-operation given during the period of this study.

I would also like to thank Mr. Mohammad Soffi Md. Noh. (UPM), Mr. Rashwan (USM), Mr. Fazli (USM), Mr. Aruan Effendy (UiTM), M s - . Nor'Ain Johari (KUiTTHO), Ms. Shafienaz Ismail (UiTM) and Ms. Nurul Huda Sulaiman (UiTM), for their help given to me throughout this research.

My heartfelt gratitude is due to my beloved father,mymother,my brother,and mytwo sisters,andfor the inspiration, spirit,confidence and encouragement given to me throughout the period of my study.

Lastly, I would like to thank all my friends and those behind the scene whose names are not mentioned here for their co-operation.

May Allah bless you all, always. Thank you very much.

TABLE OF CONTENTS

TITLE PAGEACKNOWLEGMENTiiTABLE OF CONTENTSivLIST OF TABLESviiiLIST OF FIGURESxLIST OF ABBREVIATIONSxviLIST OF SYMBOLSxviiABSTRACTxx

CHAPTER ONE: (INTRODUCTION)

1.1	General				1
1.2	Problem Statement				3
1.3	Objectives				5
1.4	Scope of Work				5
1.5	Research Methodology				7
1.6	Significant	of	the	Study	10

CHAPTER TWO: (LITERATURE REVIEW)

2.1	Tector	ctonic Plates		
2.2	Earthquake and Faulting			15
	2.2.1	Subduction Zone Interface		
	2.2.2	Compressive, Overthrust Faults		
	2.2.3	Extensional Faults or Normal Faults		
	2.2.4	Strike-Slip Faults		
2.3	Geom	etrical Notation		16
2.4	Size	of	Earthquakes	17
	2.4.1	Earthquake Intensity	"	17
	2.4.1.1 The Rossi-Forel Scale (R-F)			
	2.4.1.2 The Japanese Meteorological Agency (JMA)			19

	2.4.1.3 The Medvedev-Spoonheuer-Karnik (MSK)	19			
	2.4.1.4 The Modified Mercalli Intensity (MMI)	19			
	2.4.2 Earthquake Magnitude	23			
	2.4.2.1 Richter Local Magnitude (M _L)	23			
	2.4.2.2 Surface Wave Magnitude (M _s)	23			
	2.4.2.3 Body Wave Magnitude (M _B)	24			
	2.4.2.4 Moment Magnitude (M _w)	24			
2.5	Sumatran Subduction Zone (SSZ)	25			
2.6	Sumatran Great Fault Zone (SFZ)				
2.7	Bedrock Formation at Site				
2.8	Seismic Hazard Analysis				
2.9	Deterministic Seismic Hazard Analysis (DSHA)				
2.10	Probabilistic Seismic Hazard Analysis (PSHA)				
2.11	Ground Response Analysis	36			
2.12	Site Amplification	38			
2.13	Unit Weight or Density of Soil (YS)	38			
2.14	Shearwave Velocity (V _s)	40			
2.15	Ground Motion	41			
2.16	Attenuation Models	46			
2.17	Development of Seismic Hazard in Malaysia				
2.18	Design Spectrum Acceleration	53			
	2.18.1 Uniform Building Code (1997)	54			
	2.18.2 International Building Code (2000)	55			
	2.18.3 Euro Code 8 (2003)				
2.19	Multi Degree of Freedom (Equation of Motion)	58			
2.20	Seismic Forces on the Reinforced Concrete Building 59				
2.21	Damage Analysis of Reinforced Concrete Building	60			

CHAPTER THREE: (RESEARCH METHODOLOGY)

3.1	Deterministic Seismic Hazard Analysis (DSHA)	
3.1.1	Identification of Seismic Sources	
	3.1.1.1 Identification of Seismic Sources from Catalogues	63