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Abstract 

Clathrin-mediated endocytosis (CME) is a normal biological 
process where cellular contents are transported into the cells. 
However, this process is often hijacked by different viruses to 
enter host cells and cause infections. Recently, two proteins 
that regulate CME – AAK1 and GAK – have been proposed 
as potential therapeutic targets for designing broad-spectrum 
antiviral drugs. In this work, we curated two compound 
datasets containing 83 AAK1 inhibitors and 196 GAK 
inhibitors each. Subsequently, machine learning methods, 
namely Random Forest, Elastic Net and Sequential Minimal 
Optimization, were used to construct Quantitative Structure 
Activity Relationship (QSAR) models to predict small 
molecule inhibitors of AAK1 and GAK. To ensure predictivity, 
these models were evaluated by using Leave-One-Out (LOO) 
cross validation and with an external test set. In all cases, our 
QSAR models achieved a q2

LOO in range of 0.64 to 0.84 (Root 
Mean Squared Error; RMSE = 0.41 to 0.52) and a q2

ext in 
range of 0.57 to 0.92 (RMSE = 0.36 to 0.61). Besides, our 
QSAR models were evaluated by using additional QSAR 
performance metrics and y-randomization test. Finally, by 
using a concensus scoring approach, nine chemical 
compounds from the Drugbank compound library were 
predicted as AAK1/GAK dual-target inhibitors. The 
electrostatic potential maps for the nine compounds were 
generated and compared against two known dual-target 
inhibitors, sunitinib and baricitinib. Our work provides the 
rationale to validate these nine compounds experimentally 
against the protein targets AAK1 and GAK.  

 

Keywords 

QSAR models; Machine learning; AAK1; GAK; Dual-target 
inhibitors; Viral entry 

 



Journal of Smart Science and Technology, 2021, 1(1) 

49 

 

1        Introduction  

The clathrin-mediated endocytosis 
(CME) is a key process where cargo 
molecules or proteins are trafficked from 
the cell surface to the interior by clathrin-
coated vesicles (CCVs)1. The CME 
process is vital to physiological processes 
such as nutrient uptake, internalization of 
receptors, signal transduction regulation 
and synaptic vesicle recycling2. The 
process starts with the nucleation of 
clathrin-coated pits followed by the 
recruitment of heterotetrameric protein 
complexes known as adaptor proteins (APs; 
Figure 1a)2. There are four known adaptors 
proteins (AP1-4), of which AP2 is most 
commonly found in CCVs3. 

AP2 is a stable complex formed by 
four adaptins termed as α , β, σ2 and 2 
subunits. These four subunits give rise to a 
core domain joined to two appendage 
domains by polypeptide linkers4. The core 
domain would bind to the cargo while the 
appendages would interact with other 

accessory proteins to initiate CME5. 
Several studies showed that the 
phosphorylation of the Threonine-156 
residue in AP2 is critical for endocytosis to 
occur. Olusanya et al.6 showed that 
transferrin (receptor in iron transport) 
internalization requires the phosphorylation 
of the 2 subunit6. Additionally, another 
study by Ricotta et al. showed that 2 
phosphorylation leads to a stronger binding 
affinity to tyrosine- or di-leucine based 
sorting motifs on membrane proteins7. 
Clearly, the phosphorylation of the 2 
subunit of AP-2 is important for cargo 
recruitment and vesicle assembly 
(Figure 1b)8,9,10. This phosphorylation of 
the 2 subunit is regulated by two 
serine/threonine kinases, namely the 
AP-2-associated Protein Kinase 1 (AAK1) 
and the Cyclin-G-associated Kinase 
(GAK)7,11. 
 

 

 
 

Figure 1. Clathrin-mediated endocytosis. A. Viral attachment on cell surface receptor leading to 
assembly of CCV and endocytosis. B. Phosphorylated AP2 complex binding to cargo molecules or 

proteins. Phosphate group abbreviated as Pi 
 

Recently, AAK1 and GAK have been 
proposed as potential protein targets for 
the design of broad-spectrum antiviral 
drugs12. This is because a majority of 
viruses hijacks the same CME process to 
gain entry to host cells. Viral entry often 
starts with the attachment of viruses to 
membrane receptors followed by 
endocytosis13. For example, the Hepatitis 
C virus (HCV) contains a conserved 

tyrosine-based sorting motif (YXXΦ) that is 
recognized by μ2 subunit of AP2 followed 
by internalization via CME. This same 
YXXΦ motif exists for many other viruses, 
including the Human Immunodeficiency 
Virus (HIV) and the severe acute 
respiratory syndrome-Coronavirus-2 
(SARS-CoV-2)14,15. 

As proof-of-concept for the 
druggability of AAK1 and GAK, Neveu 
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et al.16 measured the protein-inhibitor 
dissociation constant (Kd) and showed that 
erlotinib binds to GAK (Kd = 3.16 nM) and 
sunitinib to AAK1 (Kd = 11.22 nM). 
Furthermore, both sunitinib and erlotinib 
significantly reduced viral infections when 
incubated with mammalian cells16. 
Subsequent studies showed that 
sunitinib/erlotinib combination protected 
mammalian cells against Flaviviridae (HCV, 
Dengue virus, West Nile virus, Zika virus), 
Filoviridae (Ebola virus, Marburg virus), 
Togaviridae (Chikugunya virus), 
Arenaviridae (June virus), Retroviridae 
(HIV), Paramyxoviridae (Respiratory 
Syncytial virus), Rhadoviridae (Rabies 
virus) and Coronaviridase (SARS-CoV, 
MERS-CoV and SARS-CoV-2)12,17,18,19. 
Although the data is encouraging, one 
study showed that inhibition of both AAK1 
and GAK is essential for therapeutic 
efficacy12. In both Dengue and Ebola 
murine model studies, treatment with 
erlotinib alone did not alter survival of 
infected mice, whereas sunitinib alone 
offered partial protection12. The greatest 
protection was observed when both 
erlotinib and sunitinib were administered 
together12. However, recent studies 
showed that sunitinib is an AAK1/GAK 
dual-target inhibitor itself19. This might 
explain why sunitinib alone was able to 
confer partial protection against SARS-
CoV, MERS-CoV and SARS-CoV-2.20. 

To date, only four AAK1/GAK dual-
target inhibitors were identified, namely 
sunitinib, AZD7762, an isothiazolo[5,4-
b]pyridine-based compound and 
baricitinib12,19. Interestingly, baricitinib is 
a dual-target inhibitor predicted by the 
London-based artificial intelligence 
platform BenevolentAI. Barticitinib was 
granted an Emergency Use 
Authorization by the US Food and Drug 
Administration (FDA) and is currently in 
Phase 3 clinical trial. With AAK1/GAK dual-
target inhibitors showing promises, we set 
out to predict novel GAK/AAK1 dual-target 
inhibitors.  

Our strategy involves using machine 
learning (ML) algorithms to construct 

Quantitative-Structure Activity Relationship 
(QSAR) models that could predict AAK1 
and GAK inhibitors. Machine learning 
methods are widely deployed to discover 
new inhibitors against various drug targets. 
For example, Bayesian machine learning 
models were used successfully to 
repurpose ruboxistaurin (an investigational 
drug for diabetic retinopathy) for targeting 
an Alzheimer’s disease-related protein 
target, Glycogen Synthase Kinase 3β21. 
Additionally, a Support Vector Machine 
(SVM) model identified a dual-target 
inhibitor against the cancer-associated 
proteins Fibroblast Growth Factor Receptor 
4 and the Epidermal Growth Factor 
Receptor22. Other recent successes of 
machine learning application in drug 
discovery include discovering inhibitors for 
Janus Kinase 223, Indoleamine 
2,3-dioxygenase24, RNA Polymerase of 
Hepatitis C virus25 and 3CL-Proteinase of 
SARS-CoV-226. In-depth reviews of the 
techniques and application of machine 
learning in drug discovery have been 
covered elsewhere25,27,28. 

Given the potential of machine learning 
applications in drug discovery, we would 
deploy both QSAR models for AAK1 and GAK 
in our work to screen the Drugbank compound 
library simultaneously with the intent of 
discovering AAK1/GAK dual-target inhibitors. 

2       Methods  
2.1 Construction of Compound Datasets  

Structural information of chemical 
compounds could be represented by the 
Simplified Molecular Input Line Entry 
system (SMILES). The SMILES of 
chemical compounds that were tested 
against the proteins AAK1 and GAK were 
retrieved from the bioassay database 
ChEMBL29. Additionally, other inhibitors 
reported in literature were curated, 
converted to SMILES and pooled together 
to form the AAK1 and GAK compound 
datasets. Next, we filtered for compounds 
that were annotated with protein-ligand 
dissociation constant (Kd) against the 
protein AAK1 or GAK. A Kd value is an 
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experimentally-determined measurement 
that characterises the binding affinity of a 
compound to a protein target30. A 
compound that binds tightly to its protein 
target would exhibit a low Kd value. To 
ease numerical handling, all Kd values are 
expressed as their inverse logarithmic 
values, pKd where: 

 
pKd = –log Kd 

 
Therefore, a chemical compound with a 
high pKd value indicates high binding 
affinity to proteins. In total, the AAK1 and 
GAK compound datasets consisted of 83 
and 195 compounds, respectively. 

2.2 Featurization and Train/Test Splitting 

The AAK1 and GAK compound 
datasets were subsequently featurized 
using the Extended Connectivity 
Fingerprint 4 (ECFP4)31 by using the open-
source chemoinformatics software, RDKit32 
in Python. The ECFP4 is a circular 
topological fingerprint that could be rapidly 
calculated and could capture essential 
structural information such as compound 
substructure and stereochemical 
information31. We chose ECFP4 for 
featurization as several benchmarking 
studies showed that the performance of 
ECFP4 is among the best for virtual 
screening33. After featurization, the pKd 
values were appended to the dataset as 
class attribute. The featurized compound 
datasets for AAK1 and GAK were then split 
into training and test sets with a 90:10 split 
in a stratified fashion. The purpose of the 
stratified splitting is to ensure that both the 
training and test sets have the similar 
distribution of pKd values. After this train-
test splitting process, we produced four 
datasets: (a) AAK1 training set (74 
inhibitors), (b) AAK1 external test set (9 
inhibitors), (c) GAK training set (175 
inhibitors) and (d) GAK external test set (20 
inhibitors). 

2.3 Feature Selection 

Feature selection is an important pre-
processing step to remove highly 
correlated or irrelevant fingerprints to 
prevent model overfitting34. We performed 

this step by using the Attribute Evaluator 
function available on the Waikato 
Environment for Knowledge Analysis 
(WEKA), a platform with a collection of 
machine learning algorithms35. The 
CfsSubsetEval function using the Best First 
search method was used with its default 
setting to identify important chemical 
fingerprints. The CfsSubsetEval function 
evaluates the worth of a subset of features 
by considering the individual predictive 
ability of each feature along with the degree 
of redundancy between them36. In essence, 
the CfsSubsetEval function would select a 
subset of ECFP4 fingerprints that 
correlates with the pKd values and yet, 
unrelated to each other37.  

2.4 Chemical Space and Applicability 
Domain Analysis 

PCA is a dimensionality reduction 
method that allows for the visualization of 
multi-dimensional datasets on a two- or 
three-dimensional plots38. In the context of 
structural diversity, PCA could be used to 
visualize similarities of a collection of 
compounds based on their structural and 
physicochemical properties38,39. Due to its 
usefulness in displaying and revealing 
structural diversity in a convenient 
graphical format, PCA plots are often used 
to (a) analyse chemical space and 
(b) define QSAR applicability domain (AD). 
As it is impossible for a single QSAR model 
to be applicable for all chemical 
compounds, the predicted response (pKd 
values in this work) for a modelled 
compound is only valid if the modelled 
compound falls within the AD of the model40. 
To construct the PCA plots, features such 
as molecular weight, total polar surface 
area, number of rotatable bonds, number of 
hydrogen bond donors and acceptors as 
well as the solubility (LogP) for compounds 
in the datasets were calculated. These 
features were then combined and 
transformed into a set of principal 
components (PCs). The PCA plots are then 
visualized with only the first and second 
PCs. These steps are automated by using 
the Platform for Unified Molecular Analysis 
(PUMA)41 version 1.0. 
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2.5 Construction of QSAR Models 

The QSAR models were constructed 
by using machine learning models 
available in WEKA. For both AAK1 and 
GAK, we tested the algorithms Gaussian 
Processes (GP), Elastic Net (EN), Support 
Vector Machine (SVM), Sequential Minimal 
Optimization (SMO), k-Instance Based 
Learner (IBK), K* Based Learner (K*) and 
Random Forest (RF) to identify which 
algorithms have high predictivity. The 
performance of these models was 
evaluated by using 10-fold cross validation 
(CV) and Leave-One-Out (LOO) CV 
performance. Between them all, the top 
three algorithms were GP, EN and SMO. 
The hyperparameters of these selected 
algorithms were further tuned to enhance 
performance. For the EN model for AAK1, 
the alpha and lambda sequence values 
were set to 0.0032 and 40. Meanwhile, the 
EN model for GAK has an alpha value of 
0.008 and lambda sequence value of 100. 
For SMO, the complexity parameter 
(c value) was set to 0.5 and 0.1 for AAK1 
and GAK models, respectively. Unless 
stated otherwise, all other 
hyperparameters were set to the default 
WEKA values. 

2.6 Evaluation of QSAR Model 
Performance 

The fitness and the robustness of the 
QSAR models developed in this study were 
assessed by using the statistical 
parameters, namely the coefficient of 
determination, r2 (q2 for internal or external 
validation methods), mean absolute error 
(MAE) and root mean square error (RMSE).  

2.6.1. Coefficient of Determination (r2 or 
q2).  

The r2 or q2 is a measure of fit to 
determine how well the regression lines of 
QSAR models fit the experimentally 
determined pKd values. An r2 or q2 of 1.0 
indicates a perfect fit. They are calculated 
as follows: 

r2 = 
1  SSE

SST
                  (1) 

where SSE = sum of squared errors and 
SST = total sum of squares 
 

Conventionally, a q2 > 0.5 obtained 
from a model validation procedure is 
indicative of good model performance42. 

2.6.2. Mean Absolute Error (MAE) 

The MAE represents the difference 
between experimentally determined and 
the predicted pKd values of the compounds.  

 

MAE =
∑ |yi  yi

ෝ|N
i=1

N
       (2) 

 
where N = total number of compounds and 
|y୧ − yనෝ| = absolute difference between the 
experimentally determined and the 
predicted pKd values. 

2.6.3. Root Mean Squared Error (RMSE) 

Similar to MAE, RMSE is another 
indicator to measure the variation between 
the experimentally determined and the 
predicted pKd values. However, as the 
errors are squared during the calculation, 
the RMSE metric gives a higher penalty to 
large errors.  
 

RMSE =ට
∑ (yi  yi

ෞ)2N
i=1

N
                 (3) 

 
Conventionally, an RMSE < 0.5 obtained 
from a model validation procedure 
indicates good model predictivity43. 

2.6.4. Additional Criteria of Predictive 
QSAR models 

Although a high q2 and a low RMSE are 
important indications of a good QSAR 
model, other metrics could be used to 
indicate high predictive power44. To ensure 
model robustness, Golbraikh and 
Trophsha44 suggested using an external 
test set and formulated several statistical 
criteria to evaluate QSAR models based on 
the external test set:  

a. q2
ext > 0.6  

b. (|q2
ext – qo

2
ext|)/q2

ext
 (henceforth 

referred as D value) 
c. 0.85 < k < 1.15 
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where qo
2
ext and q2

ext are correlations of 
determination of the external test set with 
or without passing through the origin and k 
is the slope of the regression line passing 
through the origin. QSAR models that 
satisfy these criteria would be considered 
as predictive 42,44,45. 

2.6.5. Y-randomization Test 

The purpose of the y-randomization test is 
to quantify chance correlation. Chance 
correlation is the situation where a handful 
of descriptors fits the data reasonably well 
without having any true connection to the 
response variable46. To conduct a 
y-randomization test, the response variable 
i.e. pKd values were randomly permutated 
while keeping the independent variables i.e. 
chemical fingerprints untouched46. This 
process generated Y-scrambled datasets 
with no meaningful connections between 
the chemical fingerprints and the pKd 
values. Hence, any QSAR models 
generated using the Y-scrambled datasets 
should fail when assessed using any form 
of validation. Each of the QSAR models in 
this work was tested 10 times with 10 
Y-scrambled datasets. 

2.7 Calculation of Electrostatic Potential 
Surface 

Complementary electrostatic 
potentials of the chemical compounds to 
their target proteins are essential for 
molecular recognition and binding. To 
calculate the electrostatic potential maps 
(EPMs) of chemical compounds, we used 
the Rapid Overlay of Chemical Structures 

(ROCS)47 software by OpenEye. To 
perform this step, a multi-conformer file 
consisting of the predicted chemical 
compounds were generated by the 
OMEGA47 software. The multi-conformer 
file was then parsed to the ROCS software 
to match the compound conformers to the 
chemical structure of baricitinib or sunitinib 
using a shape-based superposition method. 
The EPMs were then visualized by using 
VIDA48.  

3 Methods 
 

3.1 Construction of Training and Test 
Sets for AAK1 and GAK 

In a QSAR modelling process, 
machine learning algorithms would be 
evaluated using an external test set to 
determine the accuracy and the 
generalizability of the predictive models. 
For the evaluation to be valid, the external 
test set must be representative of the 
training set i.e. captures most of the 
information from the training set49. To make 
sure that the training-test set pairs were 
congruent, we used a stratified splitting 
strategy to make sure the set pairs for each 
protein target had similar pKd value 
distributions (Figure 2A and Figure 2B). 
Additionally, we used PCA and showed 
that the compounds in the training-test set 
pairs occupy similar chemical space 
(Figure 2C and Figure 2D). The first and 
second principal compounds of PCA 
captured 81.3% of the chemical diversity in 
the AAK1 training-test sets and 79.4% of 
that for GAK.  
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Figure 2. Similarity of AAK1 and GAK Training and Test Sets. Distribution of pKd values in the training 

and test sets for A.  AAK1 and B. GAK. Chemical space coverage represented by PCA plots for C. 
AAK1 and D. GAK. Blue dots represent compounds from training sets; red dots represent compounds 

from test sets 
  

Having constructed congruent 
training-test set pairs for both AAK1 and 
GAK, we featurized the datasets by using 
ECFP4 chemical fingerprints. For every 
compound, the ECFP4 algorithm 
generated a 1024-bit string to represent the 
chemical structure. While ECFP4 is 
known to require higher dimensional 
representations i.e. many chemical 
fingerprints to perform well, redundant or 
collinear chemical fingerprints would result 
in model overfitting50. To avoid this, we 

used the CfsSubsetEval function in WEKA 
to identify a subset of chemical fingerprints 
that correlated well with the pKd values. 
The result from this process was an (N, 110) 
array for AAK1 datasets and an (N, 75) 
array for GAK datasets, where N refers to 
the number of compounds in each dataset. 
The corresponding pKd values are stored 
in a separate (N, 1) array. Details of the 
featurized datasets used for subsequent 
QSAR modelling are presented in Table 1. 

 
Table 1. Details of featurized datasets for AAK1 and GAK QSAR modelling 

Descriptions AAK1 GAK 

Number of compounds in training set 74 175 
Number of compounds in external test set 9 20 
Number of features 110 chemical 

fingerprints 
75 chemical 
fingerprints 

3.2 Construction of Training and Test  
Sets for AAK1 and GAK 

With the training-test set pairs for 
both AAK1 and GAK, we proceeded to 

identify ML algorithms that could predict the 
pKd values of chemical compound based 
on chemical fingerprints. We trained the ML 
algorithms using the training sets and 
evaluated their performance  using 10-fold 
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CV and LOO CV. In both cases, three 
machine learning models (EN, GP and 
SMO) were identified as the best 
performers (Supplementary Table S1 and 
Supplementary Table S2). Next, we further 
tuned the hyperparameters of the ML 
algorithms to generate the best possible 
QSAR models. This yielded three QSAR 
models each for AAK1 (AAK1-GP, AAK1-
EN and AAK1-SMO) and GAK (GAK-GP, 
GAK-EN and GAK-SMO).  

The robustness of these models was 
assessed by both internal and external 
validation procedures. For internal 
validation, LOO CV procedure was 
adopted. First, we noted that all the QSAR 
models had q2

LOO > 0.5 and an RMSE of ≈ 
0.5 (Table 2). Although ideally, the QSAR 
models should have an RMSE of < 0.5, the 
RMSE of the QSAR models for GAK were 
still acceptable. Secondly, it was also 
noteworthy that the QSAR models for 

AAK1 outperform (refer to QSAR models) 
those for GAK.  

We also assessed the predictivity of 
the QSAR models by using the external test 
sets. Similarly, the QSAR models for AAK1 
fared better than those of GAK. Although all 
six QSAR models had q2

ext > 0.5, the QSAR 
models for AAK1 had q2

ext of 0.88 or higher 
(Table 2). The RMSE for all six models were 
also close to 0.5 (Table 2). However, the D 
values for the QSAR models of GAK were 
high (Table 2). This was because the q2

ext of 
these GAK QSAR models were skewed by 
the mis-prediction of four compounds across 
all models. The pKd values of one compound 
were consistently over-estimated while the 
remaining three compounds were 
consistently underestimated (Supplementary 
Figure S1). However, the D values improved 
dramatically for the models GAK-GP, GAK-
EN and GAK-SMO if the four outliers were 
removed (Table 2). 
 

 

Table 2. Performance of QSAR models for AAK and GAK when assessed using internal and external 
validation methods 

 Internal validation External validation 
Models q2

LOO RMSE q2ext RMSE D k 
AAK1-GP  0.80 0.48 0.88 0.54 0.13 0.98 
AAK1-EN  0.81 0.44 0.90 0.41 0.11 0.99 
AAK1-SMO  0.84 0.41 0.92 0.36 0.09 0.99 
GAK-GP  0.64 0.54 0.61 0.58     0.64* 0.99 
GAK-EN  0.65 0.52 0.57 0.61     0.75** 0.99 
GAK-SMO  0.67 0.52 0.67 0.54     0.49*** 0.99 
*Value after outlier removal = 0.18 
**Value after outlier removal = 0.23 
***Value after outlier removal = 0.08 

From the validation procedures 
above, only the AAK1-SMO QSAR model 
fulfilled all six stringent criteria for QSAR 
model predictivity while all other models 
had near misses with three or less criterion. 
However, we noted that all of the QSAR 
models were still beneficial in 
approximating the pKd values of 
chemical compounds against AAK1 and 
GAK. Our reasoning was based on (a) our 
QSAR models were still able to produce 
predicted pKd values that could rank 

chemical compounds correctly (Figure 
3A-E) and (b) the residuals of the 
experimental vs predicted pKd values were 
generally low (Supplementary Figure S1). 
The error of our models often came from 
the underestimation of pKd values for 
compounds with experimental pKd 
values > 8 (Supplementary Figure S1). 
We posit that this was because a majority 
of the compounds in our training sets had 
pKd values in the range of 6.0-7.5 (Figure 
2A and Figure 2B). 
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Figure 3. Correlation plot of experimental pKd vs predicted pKd. These plots are for the QSAR models 

A. AAK1-GP, B. AAK1-EN, C. AAK1-SMO, D. GAK-GP, E. GAK-EN and F. GAK-SMO. Blue dots 
represent training set data; red dots represent test set data; regression line shown in pale blue 

 
3.3 Y-randomization Test 

Next, we conducted Y-randomization 
test to rule out chance correlation in our 
QSAR models. In all cases, the QSAR 
models Y-randomized datasets did not 
have predictive power when assessed 

using LOO CV (Figure 4A-B). Only the 
models constructed from the original AAK1 
and GAK datasets yielded high r2 and q2. 
This indicated that the correlation of the 
predicted pKd values and the experimental 
pKd values from our QSAR models are not 
due to chance.  
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Figure 4. Performance of QSAR models in Y-randomization test. Y randomization plots for A. AAK1 
and B. GAK. Purple dots for datasets trained using EN; Blue dots for datasets trained using GP; 

green dots for datasets trained using SMO. Original dataset highlighted in blue circle 

 
3.4 Model Deployment 

Drug repositioning refers to the 
strategy of discovering new bioactivities of 
existing drugs beyond their original 
intended purpose51. This strategy is 
attractive because known drugs often have 
determined pharmacological and safety 
profile; these information would help in 
accelerating their development into new 
therapeutics51. As part of our drug 
repositioning effort, we deployed our QSAR 
models on the Drugbank compound 
library52 consisting of investigational, 
experimental and FDA-approved drugs. To 
identify chemical compounds that could 
potentially exhibit high pKd values against 
the protein targets AAK1 and GAK, we 
decided to take a concensus scoring 
approach (Figure 5A). Concensus scoring 
could improve model accuracy as the 
predicted pKd values of the different QSAR 

models are averaged (henceforth referred 
to as concensus pKd values)53,54. In our 
strategy, a compound would be considered 
as a potential AAK1/GAK dual-target 
inhibitor if its concensus pKd values > 8 for 
both AAK1 and GAK. In total, 252 
compounds and 361 compounds fulfilled 
this criterion (Figure 5B-C). Among them, 
19 compounds had concensus pKd 
values > 8 against both AAK1 and GAK 
inhibitors (Figure 5B). Next, we conducted 
AD analysis by means of PCA. Only 
compounds that fall within the chemical 
space defined by the training set were 
considered for further analysis. From this, 
only nine of the potential dual inhibitors fall 
within the AD of the QSAR models (Figure 
5D-E). The identities of these nine 
compounds are given in Table 3 and their 
chemical structures are presented in 
Supplementary Figure S2.
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Figure 5 Deployment of QSAR models. A. General strategy for QSAR model deployment using a 
concensus scoring method. B. Venn diagram showing number of compounds from Drugbank with 

concensus pKd values > 8. Red circle represents AAK1 inhibitors; blue circle represents GAK 
inhibitors. C. Distribution of concensus pKd values obtained from AAK1 and GAK QSAR models. The 
selected nine compounds shown in green. D. PCA plots for AD analysis for AAK1, and E. GAK. Red 

dots for compounds in training sets (that define the AD). Green dots for selected Drugbank 
compounds that fall within the AD. Purple dots for selected Drugbank compounds that fall outside of 

AD 
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Table 3. Description of Drugbank compounds that were predicted as AAK1/GAK dual-target inhibitors 

 Drugbank ID Common name Description 

1 DB12675 PF-4995274 Investigational drug against serotonin 4 receptor (5HT-4) 
for treatment of depression 

2 DB12137 GSK-256066 Investigational drug against phosphodiesterase 4B 
(PDE4B) for treatment of asthma and chronic obstructive 
pulmonary disease (COPD) 

3 DB12066 Orteronel Investigational drug against Cytochrome P450 for 
treatment of prostate cancer 

4 DB00802 Alfentanil FDA-approved drug against opioid 𝜇-receptor; used as 
anesthesia and analgesic 

5 DB08219 - Experimental drug against Cyclin-dependent kinase 2 
(CDK2) for treatment against cancer 

6 DB12949 PF-03382792 Investigational drug against serotonin 4 receptor (5HT-4) 

7 DB04704 - Experimental drug that binds to RAR-related orphan 
receptor gamma (RORγ) 

8 DB13307 Proscillaridin Experimental drug against topoisomerase I and II for 
treatment against cancer 

9 DB13185 Oxabolone 
cipionate 

Prodrug of oxabolone, an anabolic-androgenic steroid; 
used as a performance enhancing drug 

3.5 Electrostatic Potential Map 
Comparison 

 
Chemical compounds often 

complement their protein target in shape 
and electrostatics55. This implies that 
chemical compounds with similar shape 
and electrostatic properties may bind to the 
same receptor55. This principle has been 
used to identify small molecule inhibitors 
similar to natural substrates or known 
inhibitors by screening for compounds 
with similar shape, volume and 
electrostatics55,56,57. Therefore, we 
hypothesize that our nine predicted 
compounds should exhibit similar EPMs 
as baricitinib and sunitinib. Based on the 
virtual inspection of the electrostatic 
features, the EPMs of DB12066, DB12137, 
DB04704, DB13185 and DB13307 were 
similar to baricitinib. The EPMs of the 
compounds showed a balance of 
positively-charged and negatively-charged 
regions (Figure 6) with hydrophobic 
patches (absence of positive or negative 
electrostatic field). Meanwhile, the EPMs of 
DB12675, DB12949, DB08219 and 
DB00802 were similar to that of sunitinib 
(Figure 6) with the positive electrostatics 
field featured dominantly. 

4 Discussion  

To date, the COVID-19 pandemic 
has affected 178 million people and caused 
3.86 million fatalities globally. Despite the 
availability of vaccines, COVID-19 is likely 
to be endemic with occasional regional 
outbreaks globally58,59. Besides, rapid 
environmental changes due to 
anthropogenic activities are poised to 
cause future COVID-19-like pandemics 
and other zoonotic diseases60. As such, 
there is an urgent need to develop broad-
spectrum antivirals that may work against 
future viral pandemics of unknown origin61. 
Current anti-viral drugs often target specific 
viral proteins; therefore, they are termed as 
direct-acting antiviral agents (DAAs). 
However, another strategy to combat viral 
infections is by designing drugs that target 
host proteins that viruses often exploit in 
viral entry and replication, such as AAK1 or 
GAK. Such drugs are known as host-
directed antiviral agents (HDAs). Besides 
the fact that HDAs are likely to be broad-
spectrum antiviral drugs, one study showed 
that HDAs could provide high genetic 
barrier to the development of drug 
resistance61. 

 



Journal of Smart Science and Technology, 2021, 1(1) 

60 

 

 

Figure 6. Electrostatics Potential Maps of baricitinib, sunitinib and the predicted dual-target inhibitors. 
Positive electrostatic field is denoted as blue patches; negative electrostic field is denoted as red 

patches; hydrophobic field is denoted as absence of both blue or red patches 
 
Therefore, designing HDA drugs that target 
host proteins such as AAK1 and GAK could 
be advantageous in future-proofing against 
pandemics that could occur in years to 
come.  

In this work, we have used machine 
learning method/approach to construct 
QSAR models to discover AAK1/GAK dual-
target inhibitors. This is in line with the 
study showing that an erlotinib/sunitinib 
combination treatment that targets both 
AAK1 and GAK exhibits higher therapeutic 
efficacy than targeting either protein 
alone12. We are also interested to design 
dual-target inhibitors because such drugs 
could reduce therapeutic doses, exhibit 
less side effects and reduce the risk of the 
emergence of drug resistance62.       

First, we constructed three ECFP4-
based QSAR models for each of the protein 
targets AAK1 and GAK. Although our 
QSAR models performed modestly in 
predicting the absolute pKd values, they 
were able to correctly rank compounds in 
the external test set and exhibited good q2 
values when tested with both internal and 
external validation methods. Next, we used 
a concensus scoring approach to identify 
chemical compounds that were predicted 
to have high concensus pKd values for 
both AAK1 and GAK. In total, 19 chemical 
compounds from Drugbank were predicted 
to have pKd values > 8 against both target 
proteins. However, PCA plots showed that 
only nine compounds fell within the AD of 
our QSAR models. Out of these nine 
compounds, two compounds were 
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identified as potential COVID-19 
therapeutics by other labs. Compound 
GSK-256066 is a phosphodiesterase 4B 
inhibitor that can inhibit the Main Protease 
protein of SARS-CoV-263. Likewise, 
Proscillaridin is predicted to be an inhibitor 
of the SARS-CoV-2 non-structural protein 
14, an N7-methyltransferase64. More 
significantly, Proscillaridin was found to 
inhibit the post-attachment step of HBV 
before viral RNA replication through an 
unknown mechanism65.  Given that HBV 
enters primary hepatocytes through CME66, 
it is therefore plausible that Proscillaridin 
could have inhibited AAK1 and/or GAK to 
prevent entry of HBV into human cells. To 
further bolster our confidence on our 
predicted compounds, we calculated the 
EPMs of two AAK1/GAK dual-target 
inhibitors (baricitinib and sunitinib) and 
compared them with our predicted 
compounds. Five of our compounds 
showed similar electrostatics to baricitinib 
while the other four are similar to sunitinib. 
Therefore, it is plausible that these 
compounds could mimic baricitinib or 
sunitinib in interacting with AAK1 and GAK. 

To the best of our knowledge, our 
work represents the first QSAR models 
constructed using machine learning 
methods for AAK1 and GAK. One field-
based QSAR model for GAK inhibitors was 
reported by Asquith et al. in 201967. Their 
QSAR model was constructed based on a 
series of derivatives bearing the quinoline 
scaffold. Similar to their findings, our EPMs 
for our proposed inhibitors have either 
(a) strong hydrophobic fields or (b) with 
strong positive electrostatics. Based on 
their WaterMap analysis, Asquith et al.67 
posit that hydrophobic fields are needed by 
GAK inhibitors to displace a high-energy 
water in the inhibitor binding site67. 

5 Conclusion  

Targeting AAK1 and GAK is a valid 
strategy in designing broad-spectrum 
antivirals against known and future viruses. 
In our work, we constructed two QSAR 
models that were able to predict the pKd 
values of AAK1 and GAK inhibitors. 
However, our QSAR models would benefit 
from the incorporation of data from AAK1 
or GAK inhibitors with higher binding 

affinities in future. Nonetheless, our models 
were still able to rank and identify chemical 
compounds that could potentially be 
developed as AAK1 or GAK inhibitors. With 
the QSAR models, we screened the 
Drugbank compound library and identified 
nine compounds that performed well in 
both QSAR models. Hence, from this work, 
we provided in silico justification and sets 
the foundation for future experimental 
exploration of these nine compounds as 
bona fide AAK1/GAK dual-target inhibitors 
capable of inhibiting viral entry into host 
cells. 
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Supplementary Information 

Supplementary Table S1. Performance of ML algorithms in predicting pKd values of AAK1 inhibitors 
when assessed using internal validation methods 

Performance of Machine Learning Algorithms 
 GP EN SVM SMO IBK K* RF 
Regression Model Statistics 

r2 0.90 0.90 0.74 0.89 0.94 0.93 0.91 
MAE 0.26 0.25 0.79 0.18 0.12 0.16 0.27 

RMSE 0.36 0.35 0.95 0.34 0.26 0.28 0.34 
10-fold Cross Validation Performance 

q210CV 0.80 0.81 0.44 0.82 0.35 0.42 0.52 
MAE 0.38 0.37 0.82 0.33 0.67 0.64 0.59 

RMSE 0.49 0.48 0.99 0.44 0.84 0.78 0.73 
LOO-Cross Validation Performance 

q2LOO 0.80 0.80 0.52 0.83 0.35 0.41 0.53 
MAE 0.37 0.37 0.81 0.29 0.66 0.64 0.58 

RMSE 0.48 0.48 0.98 0.42 0.83 0.79 0.72 

 

Supplementary Table S2. Performance of ML algorithms in predicting pKd values of GAK inhibitors 
when assessed using internal validation methods 

Performance of Machine Learning Algorithms 
 GP EN SVM SMO IBK K* RF 
Regression Model Statistics 

r2 0.78 0.74 0.47 0.77 0.85 0.84 0.81 
MAE 0.28 0.34 0.57 0.22 0.16 0.19 0.28 

RMSE 0.43 0.48 0.75 0.43 0.35 0.36 0.41 
10-fold Cross Validation Performance 

q210CV 0.66 0.59 0.32 0.66 0.10 0.14 0.22 
MAE 0.36 0.42 0.61 0.35 0.65 0.63 0.57 

RMSE 0.52 0.58 0.79 0.52 0.94 0.87 0.79 
LOO-Cross Validation Performance 

q2LOO 0.64 0.58 0.33 0.64 0.10 0.15 0.22 
MAE 0.37 0.43 0.60 0.36 0.63 0.62 0.56 

RMSE 0.54 0.59 0.78 0.54 0.94 0.86 0.79 
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Supplementary Figure S1. Residual plots between experimental and predicted pIC50 values for 

QSAR models 
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Supplementary Figure S2. Chemical structures of the predicted AAK1/GAK dual-target inhibitors. The 

Drugbank ID and their predicted pKd values against GAK and AAK1 are provided 
 

 

DB12675
AAK1 pKd: 8.65
GAK pKd: 9.07 

DB00802
AAK1 pKd: 8.28
GAK pKd: 8.06

DB12137
AAK1 pKd: 8.16
GAK pKd: 9.41 

DB12066
AAK1 pKd: 8.47
GAK pKd: 8.43

DB08219
AAK1 pKd: 8.50
GAK pKd: 8.81

DB12949
AAK1 pKd: 8.07
GAK pKd: 8.64 

DB04704
AAK1 pKd: 8.13
GAK pKd: 8.14 

DB13307
AAK1 pKd: 8.23
GAK pKd: 8.37 

DB13185
AAK1 pKd: 8.19
GAK pKd: 8.21 


